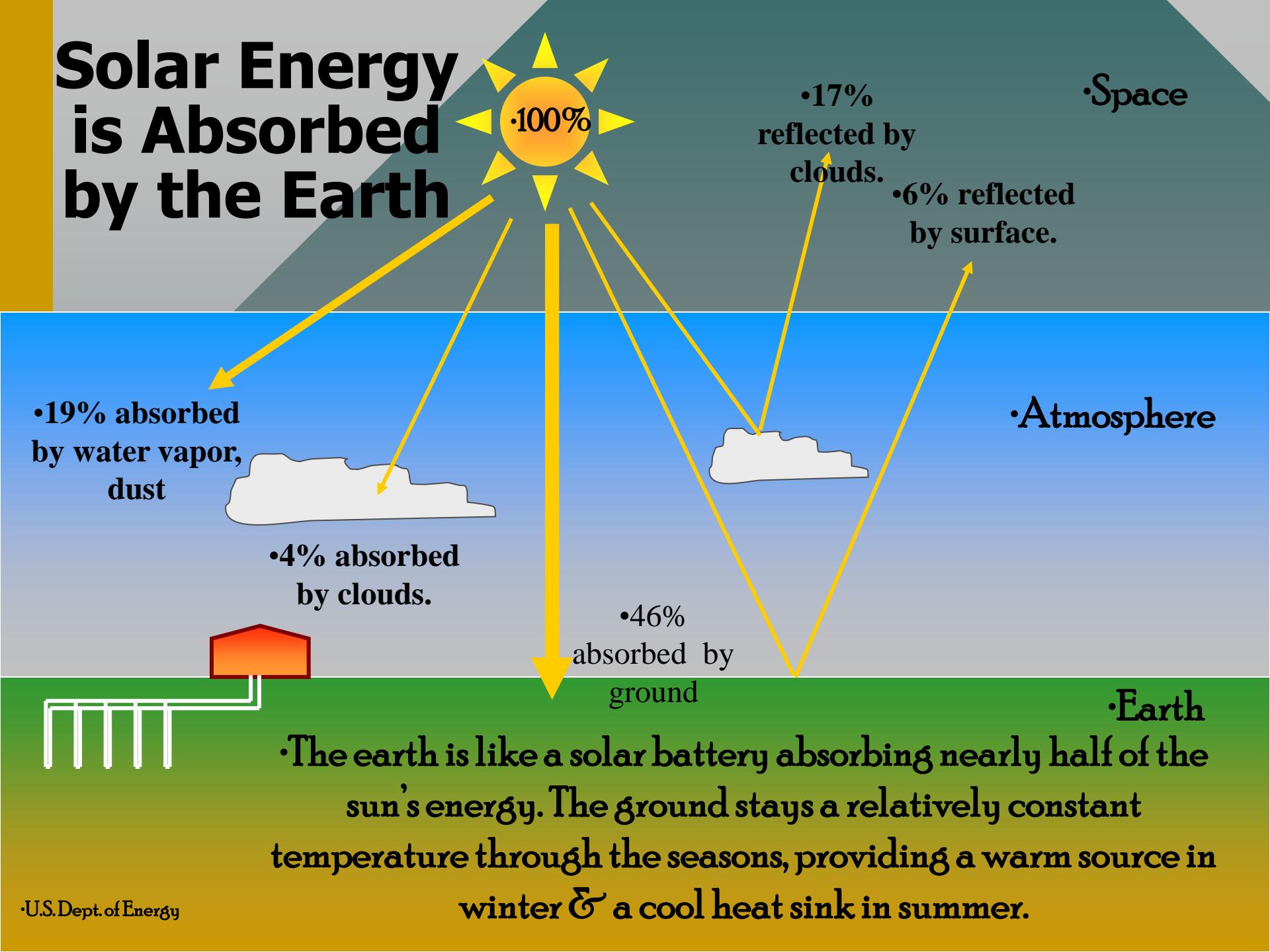


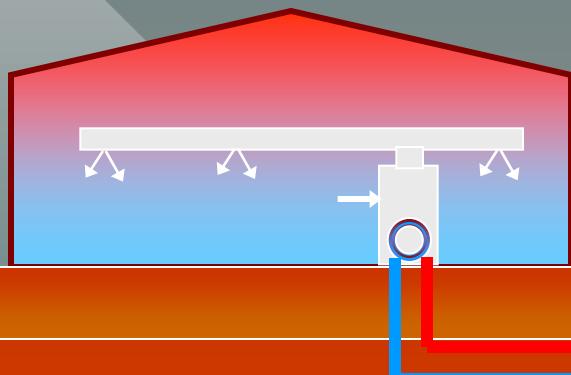
# Minnesota Geothermal Heat Pump Association 2012

## Properly Sizing Ground Source Heat Pump Systems




Richard Hiles  
ClimateMaster

# Objective


**Properly Size and Select  
GSHP System for Low Operating  
Costs And Proper Control of  
Indoor Air Conditions**



# Solar Energy is Absorbed by the Earth



# Heat Is Transferred Through an Earth Loop



- Plastic pipe is buried in the earth around the building
- When liquid is pumped through the pipe, it transfers energy with the earth around it
- Insulating layer of earth
- 40-70°F

# Sizing Procedures

Calculate Building / Zone Heating / Cooling Loads

Select Geothermal Heat Pump/s for Building / Zones

Design Ground Loop System Using a Software Program

Run Operating Costs Comparison Using a Software Program

Verify Dehumidification in Cooling Mode

Check Effects on Ground Loop System by Unit Size

# Objectives: Building Loads Residential

Heating and cooling loads are required for each zone / area that will have a ground loop system

Residential - Manual "J" load Calculation

Room by Room loads for duct sizing & CFM

Total Zone or Building loads for Equipment Selection

Cooling Load MUST Include Sensible and Latent Loads

# Objectives: Building Loads Residential

## Various Software Programs to Calculate Loads

**Input Data  
Outside  
Walls**

| 1                |  | Room name                                                                          |       | Entire House                   |      | First Floor     |        |      |      |
|------------------|--|------------------------------------------------------------------------------------|-------|--------------------------------|------|-----------------|--------|------|------|
| 2                |  | Exposed wall                                                                       |       | 200.0 ft.                      |      | 200.0 ft.       |        |      |      |
| 3                |  | Room dimensions                                                                    |       |                                |      | 40.0 x 60.0 ft. |        |      |      |
| 4                |  | Ceiling height                                                                     |       | 8.0                            |      | 8.0 heat/cool   |        |      |      |
| Type of exposure |  | CST                                                                                | H-HTM | C-HTM                          | Area | H-BtuH          | C-BtuH |      |      |
| 5                |  | Gross Exposed Walls and Partitions                                                 |       | a 12H<br>b<br>c<br>d<br>e<br>f | 1600 |                 | 1600   |      |      |
|                  |  |   |       |                                | 0    |                 | 0      |      |      |
|                  |  |                                                                                    |       |                                | 0    |                 | 0      |      |      |
|                  |  |                                                                                    |       |                                | 0    |                 | 0      |      |      |
|                  |  |                                                                                    |       |                                | 0    |                 | 0      |      |      |
|                  |  |                                                                                    |       |                                | 0    |                 | 0      |      |      |
|                  |  |                                                                                    |       |                                | 0    |                 | 0      |      |      |
| 6                |  | Windows and Glass Doors Heating                                                    |       | a 3C<br>b<br>c<br>d<br>e<br>f  | 180  | 6917            | 180    | 6917 |      |
|                  |  |  |       |                                | 0    | 0               | 0      | 0    |      |
|                  |  |                                                                                    |       |                                | 0    | 0               | 0      | 0    |      |
|                  |  |                                                                                    |       |                                | 0    | 0               | 0      | 0    |      |
|                  |  |                                                                                    |       |                                | 0    | 0               | 0      | 0    |      |
|                  |  |                                                                                    |       |                                | 0    | 0               | 0      | 0    |      |
|                  |  |                                                                                    |       |                                | 0    | 0               | 0      | 0    |      |
| 7                |  | Windows and Glass Doors Cooling                                                    |       | North                          | 21.4 | 50              | 1079   | 50   | 1079 |
|                  |  |                                                                                    |       | NE and NW                      | 0.0  | 0               | 0      | 0    | 0    |
|                  |  |                                                                                    |       | East and West                  | 65.5 | 90              | 5895   | 90   | 5895 |
|                  |  |                                                                                    |       | SE and SW                      | 0.0  | 0               | 0      | 0    | 0    |
|                  |  |                                                                                    |       | South                          | 34.9 | 40              | 1382   | 40   | 1382 |
|                  |  |                                                                                    |       | Horizontal                     | 0.0  | 0               | 0      | 0    | 0    |

# Objectives: Building Loads Residential

## Windows Cooling

**Select Type**

**Direction**

**Shading**  
**CLG HTM**

Zone / room: Entire House / First Floor

Glazing CST: 3C (Metal Frame, Dbl Pane, Clear Glass)

Glazing orientation:

|      |      |      |      |
|------|------|------|------|
| s    | e    | n    | w    |
| 45.0 | 45.0 | 45.0 | 45.0 |

Glazing area (sqft):

|   |   |   |   |
|---|---|---|---|
| a | a | a | a |
| c | c | c | c |

Wall / ceiling type (see F5):

|   |   |   |   |
|---|---|---|---|
| a | a | a | a |
| n | n | n | n |

Glazing type (c, h, r):

|   |   |   |   |
|---|---|---|---|
| c | c | c | c |
| n | n | n | n |

Storms on in summer (y, n):

|    |    |    |    |
|----|----|----|----|
| 90 | 90 | 90 | 90 |
| n  | n  | n  | n  |

Inclination angle (0 - 90):

|      |      |      |      |
|------|------|------|------|
| 0.90 | 0.90 | 0.90 | 0.90 |
| n    | n    | n    | n    |

Shading type (n, d, b, s, i):

|      |      |      |      |
|------|------|------|------|
| 1.00 | 1.00 | 1.00 | 1.00 |
| 2.00 | 2.00 | 2.00 | 2.00 |

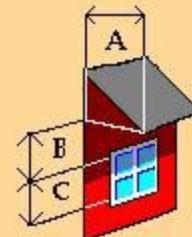
Shading coefficient (.01 - 1.0):

|      |      |      |      |
|------|------|------|------|
| 5.00 | 5.00 | 5.00 | 5.00 |
| 5.00 | 5.00 | 5.00 | 5.00 |

Overhang depth, A (ft):

|      |      |      |      |
|------|------|------|------|
| 1.00 | 1.00 | 1.00 | 1.00 |
| 2.00 | 2.00 | 2.00 | 2.00 |

Overhang to glazing distance, B (ft):


|      |      |      |      |
|------|------|------|------|
| 2.00 | 2.00 | 2.00 | 2.00 |
| 5.00 | 5.00 | 5.00 | 5.00 |

Glazing height, C (ft):

|      |      |      |      |
|------|------|------|------|
| 5.00 | 5.00 | 5.00 | 5.00 |
| 5.00 | 5.00 | 5.00 | 5.00 |

Component cooling HTM:

|        |        |        |        |
|--------|--------|--------|--------|
| [34.9] | [65.5] | [21.4] | [65.5] |
| 5.00   | 5.00   | 5.00   | 5.00   |



Note: Any overhang-shaded portion will be entered on the worksheet as facing north.

# Objectives: Building Loads Residential

## Doors, Ceiling, Floors & Infiltration

**Input  
Doors**

|    |                                        |  |                                                   |                                           |                             |                         |                         |                         |  |  |  |  |
|----|----------------------------------------|--|---------------------------------------------------|-------------------------------------------|-----------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--|
| 6  | Other<br>Doors                         |  | a 11B [19.5] [ 7.2] 48 934 345 48 934 345         | b 10C [19.1] [ 7.1] 48 916 339 48 916 339 |                             |                         |                         |                         |  |  |  |  |
| 9  | Net Exposed<br>Walls and<br>Partitions |  | a 12H 3.2 1.2 1324 4210 1557 1324 4210 1557       | b 0.0 0.0 0 0 0 0 0 0 0                   | c 0.0 0.0 0 0 0 0 0 0 0     | d 0.0 0.0 0 0 0 0 0 0 0 | e 0.0 0.0 0 0 0 0 0 0 0 | f 0.0 0.0 0 0 0 0 0 0 0 |  |  |  |  |
| 10 | Ceilings                               |  | a 16G [ 1.7] [ 1.3] 2400 4198 3168 2400 4198 3168 | b [ 0.0] [ 0.0] 0 0 0 0 0 0               | c [ 0.0] [ 0.0] 0 0 0 0 0 0 |                         |                         |                         |  |  |  |  |
| 11 | Floors                                 |  | a 19F [ 5.8] [ 0.0] 2400 13865 0 2400 13865       | b [ 0.0] [ 0.0] 0 0 0 0 0 0               | c [ 0.0] [ 0.0] 0 0 0 0 0 0 |                         |                         |                         |  |  |  |  |
| 12 | Infiltration                           |  |                                                   | 61.0 8.2 276 16824                        | 2257 276 16824 2257         |                         |                         |                         |  |  |  |  |

**Input  
Floors**

**Infiltration**

# Objectives: Building Loads Residential

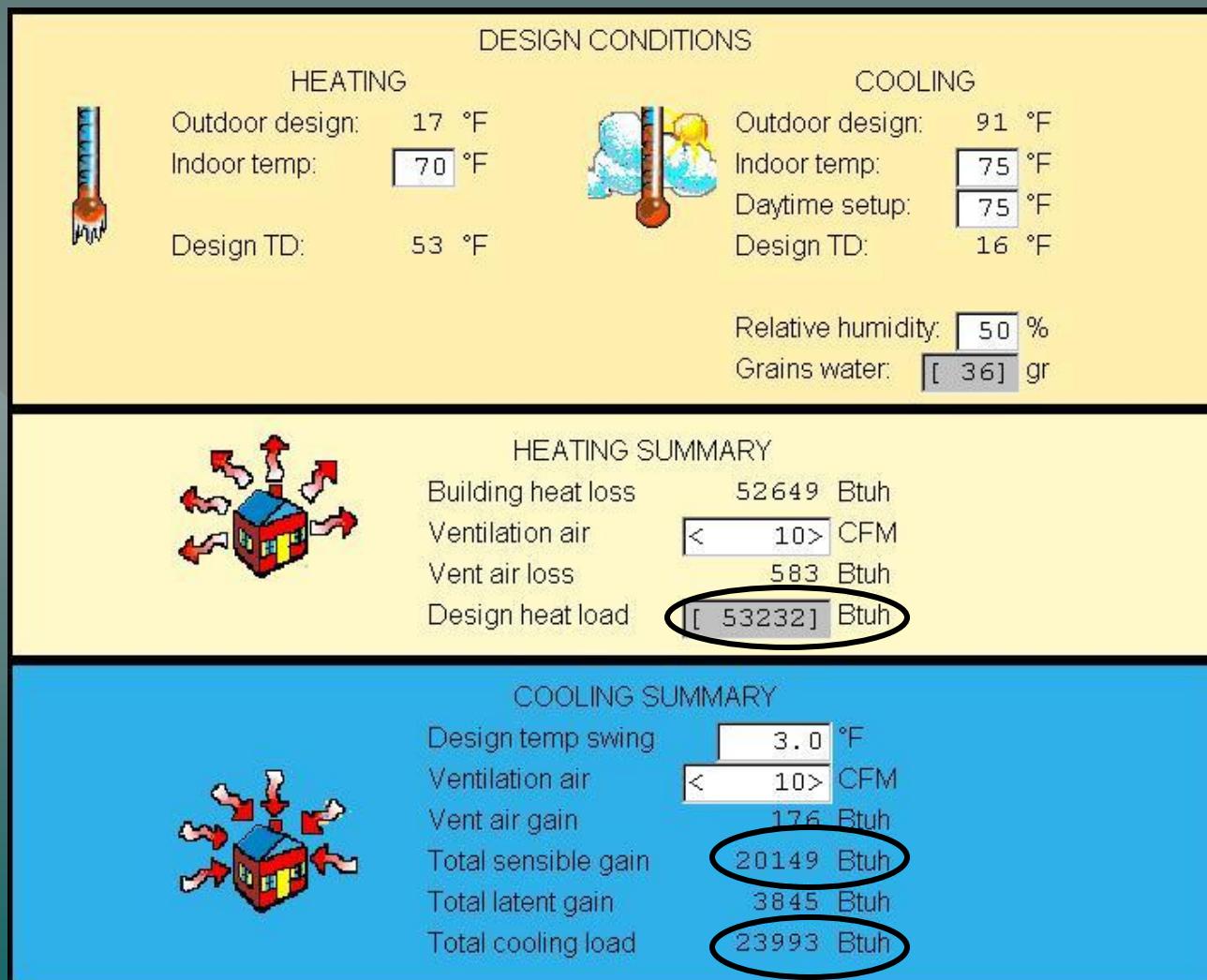
## Loads Subtotals

**HTG**

**Internal  
Gains**

**CLG  
CFM**

|                                     |                                                                                                            |                                       |               |                        |               |                             |
|-------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|------------------------|---------------|-----------------------------|
| <b>13</b><br><b>14</b><br><b>15</b> | Subtotal Btuh Loss=6+8+9+10+11+12<br>Duct Btuh Loss<br>Total Btuh Loss = 13+14                             | 47863<br>4786<br>52649                | 10 %          | 47863<br>4786<br>52649 | 10 %          | 47863<br>4786<br>52649      |
| <b>16</b><br><b>17</b><br><b>18</b> | Internal Gains: People @ 300<br>Appliances @ 1200<br>Subtotal RSH Gain=7+8+9+10+11+12+16<br>Duct Btuh Gain | 2<br>2<br>600<br>2400<br>19022<br>951 | 2<br>2<br>5 % | 2<br>2<br>19022<br>951 | 2<br>2<br>5 % | 600<br>2400<br>19022<br>951 |
| <b>15</b><br><b>19</b><br><b>20</b> | Total Btuh Loss = 13+14<br>Total RSH Gain = (17+18)*PLF<br>CFM air required                                | 52649<br>19973<br>956                 | 1.00          | 52649<br>19973<br>956  | 1.00          | 52649<br>19973<br>956       |


# Objectives: Building Loads Residential

## Heating and Cooling Loads Total

**Design  
Conditions**

**Heating  
Load**

**Cooling  
Sensible  
Latent  
Total**



# Objectives: Select Heat Pumps Residential

Units are Normally Selected for Heating Load in Northern Climates

Size Unit by the Dominate Load / Heating or Cooling

Select 2 Stage High Efficiency Geothermal Units

Unit Should Cover Approximately 95% of Annual Heating Requirements

Must Check Sensible and Latent Cooling Capacity

Use Manufacturers Software Program!!

# Objectives: Select Heat Pumps Residential

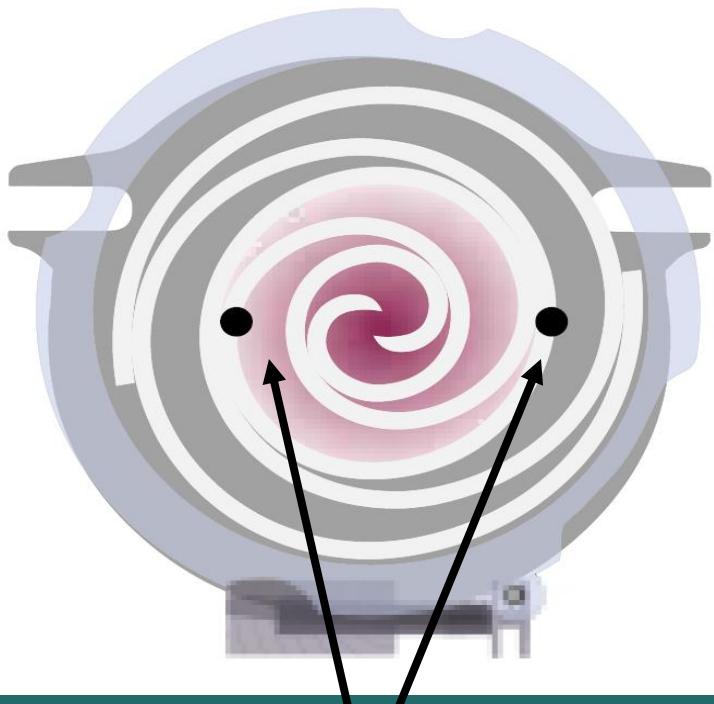
Packaged Units in  
Upflow  
Downflow  
Horizontal  
Split Units

Water to Water



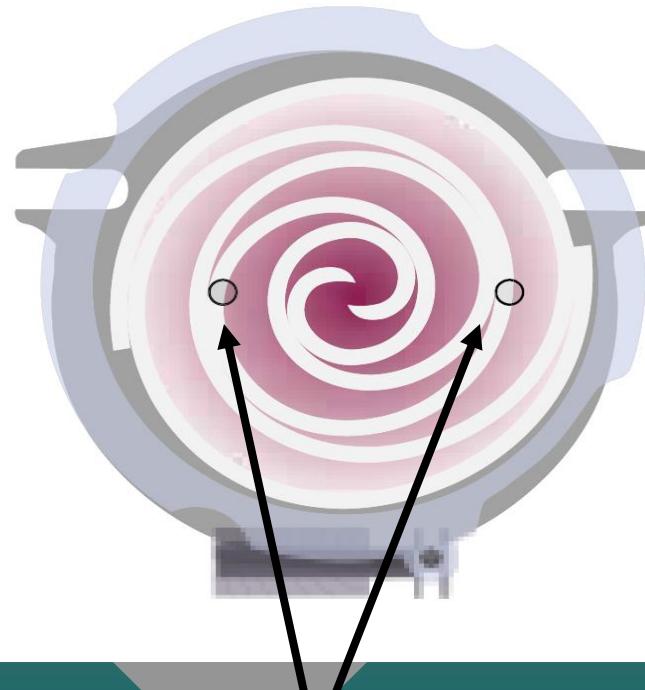
# 2-Stage Copeland UltraTech Compressor




Solenoid  
Valve  
AC/DC  
converter  
“unloading”  
control

- Same “Footprint” as Single Speed Compressor
- Thicker Shell than R22 Version
- Anti-rotation Device to Insure Quiet Operation
- Solenoid Switches Speed
- R-410A Compressors Have Lower Failure Rates than R22

# Copeland UltraTech /Two-Stage Unloading Scroll


With Copeland Scroll UltraTech™, two internal bypass ports enable the system to run at 67% part-load capacity for better efficiency and humidity control. Based on demand, the modulation ring is activated, sealing the bypass ports and instantly shifting capacity to 100%. Take advantage of “shift on the fly” stage changing (no stopping and starting required like other two-stage compressors).

**67% Capacity**



Gas By-pass - Ports Open

**100% Capacity**



Ports Closed

# Objectives: Select Heat Pumps Commercial

Unit Selected by Dominate Load / Typically Cooling in Commercial Applications

Select Geothermal High Efficiency Units

Unit Net Sensible Cooling Capacity Must Meet or Exceed Sensible Cooling Load - Verify Heating Capacity and Latent Capacity

Dual Capacity Machines are Recommended

Units Rated by ARI standard 13256-1

“Reheat” option for humidity control

# Objectives: Select Heat Pumps

ARI/ISO 13256-1 GLHP Ratings are at 77°F

EWT for Cooling and 32°F EWT for Heating

ARI/ASHRAE/ISO 13256-1

English (IP) Units

| Model | Capacity Modulation | Water Loop Heat Pump |            |                    |     | Ground Water Heat Pump |            |                    |     | Ground Loop Heat Pump                 |            |                                       |     |
|-------|---------------------|----------------------|------------|--------------------|-----|------------------------|------------|--------------------|-----|---------------------------------------|------------|---------------------------------------|-----|
|       |                     | Cooling Water 86°F   |            | Heating Water 68°F |     | Cooling Water 59°F     |            | Heating Water 50°F |     | Cooling Full Load 77°F Part Load 68°F |            | Heating Full Load 32°F Part Load 41°F |     |
|       |                     | Capacity Btuh        | EER Btuh/W | Capacity Btuh      | COP | Capacity Btuh          | EER Btuh/W | Capacity Btuh      | COP | Capacity Btuh                         | EER Btuh/W | Capacity Btuh                         | COP |
| TT026 | Full                | 25,300               | 15.9       | 30,800             | 5.3 | 28,900                 | 24.5       | 25,700             | 4.8 | 26,600                                | 18.5       | 19,800                                | 4.0 |
|       | Part                | 19,400               | 18.3       | 22,400             | 6.1 | 22,200                 | 30.8       | 18,600             | 5.1 | 21,200                                | 26.0       | 16,500                                | 4.6 |
| TT038 | Full                | 36,200               | 15.6       | 44,800             | 5.3 | 41,200                 | 23.0       | 36,700             | 4.7 | 38,200                                | 18.2       | 29,000                                | 4.0 |
|       | Part                | 26,200               | 18.5       | 30,800             | 6.3 | 30,200                 | 31.5       | 24,800             | 5.1 | 28,900                                | 27.0       | 22,100                                | 4.5 |
| TT049 | Full                | 48,400               | 15.7       | 59,900             | 5.2 | 54,600                 | 22.5       | 48,300             | 4.7 | 50,600                                | 17.9       | 37,500                                | 4.0 |
|       | Part                | 36,100               | 18.0       | 44,300             | 6.2 | 40,700                 | 28.7       | 35,400             | 5.1 | 39,600                                | 24.9       | 31,200                                | 4.6 |
| TT064 | Full                | 61,500               | 15.0       | 72,300             | 5.0 | 68,600                 | 22.0       | 59,600             | 4.4 | 64,800                                | 17.5       | 48,000                                | 3.9 |
|       | Part                | 44,900               | 17.6       | 51,100             | 5.7 | 51,900                 | 29.7       | 41,800             | 4.7 | 49,800                                | 25.3       | 37,500                                | 4.3 |

Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature

Heating capacities based upon 68°F DB, 59°F WB entering air temperature

All ratings based upon 208V operation

Ground loop heat pump ratings based upon 15% antifreeze solution

Certified in accordance with the ARI/ISO Standard 13256-1 Certification Program, which replaced ARI Standard-320, 325, and 330.



Rev: 07/06/04

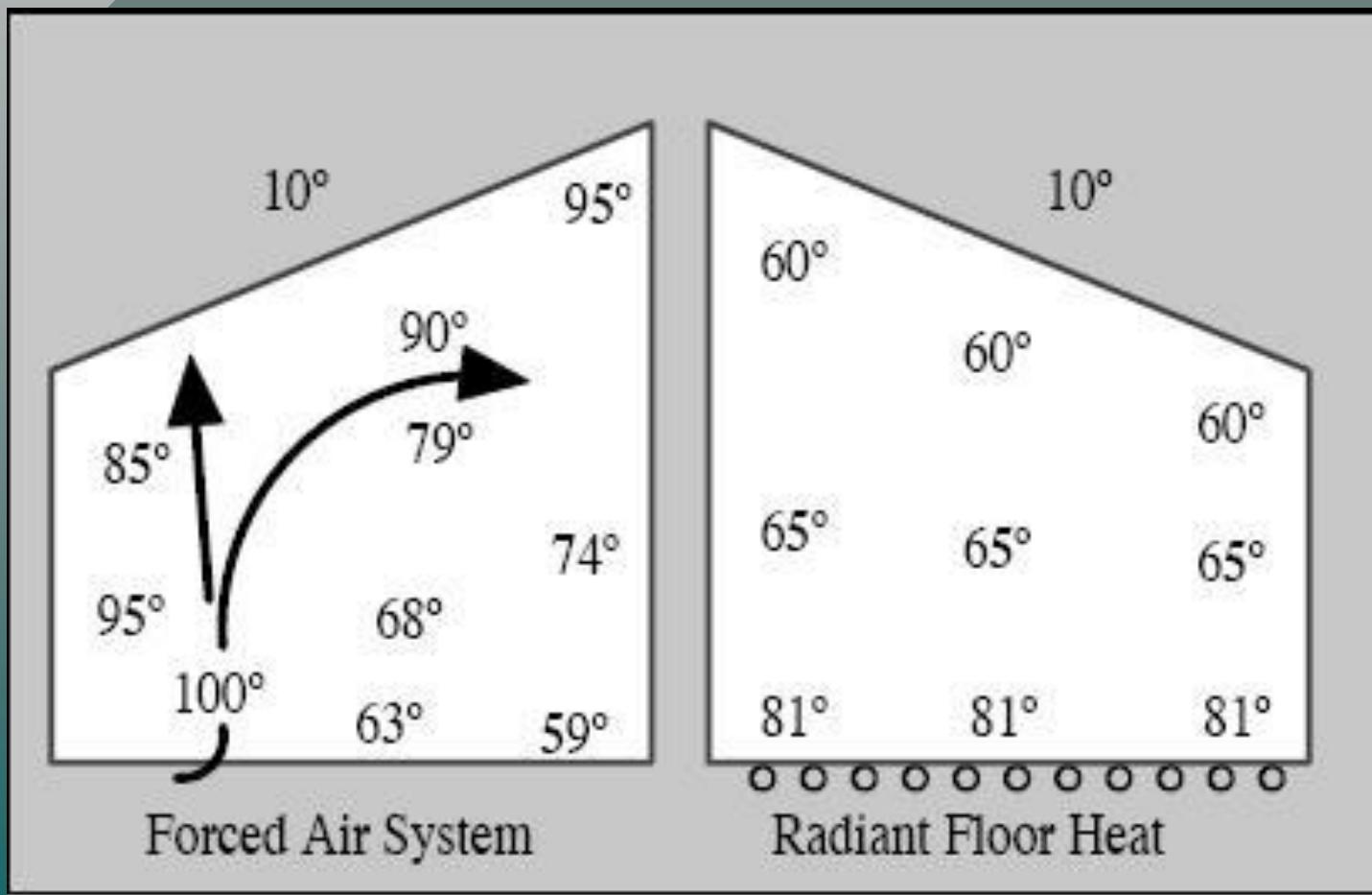
# Objectives: Select Heat Pumps Commercial

Commercial applications may require larger capacity products, rooftop units, console products or vertical stack products.



# Objectives: Select Heat Pumps Residential

Units are Rated at AHRI Conditions

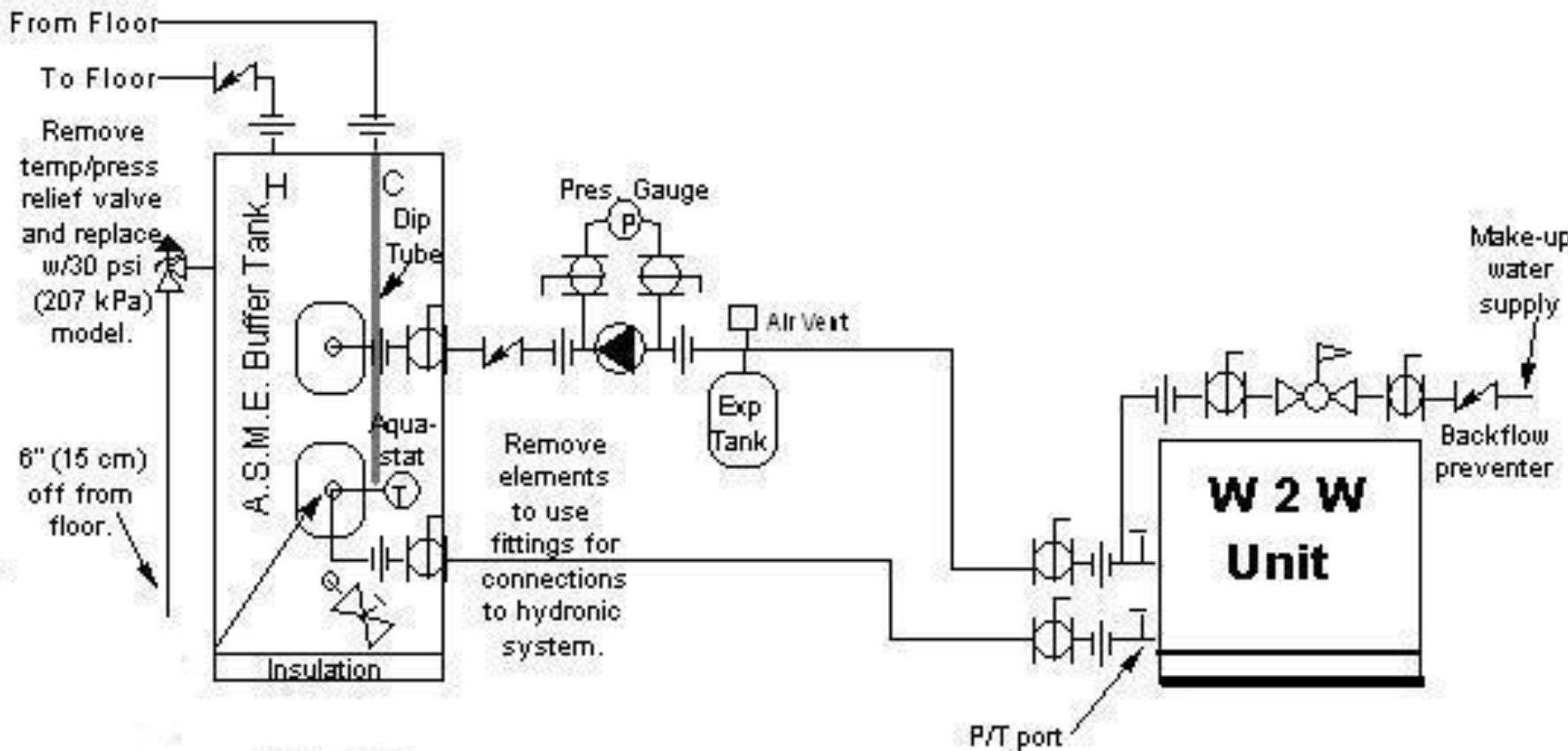

Units Need to be Selected at **Maximum**  
**and Minimum** Loop Design Temperatures

Typically 30°F Minimum Entering Water  
Temperature (EWT) & 95°F Maximum EWT



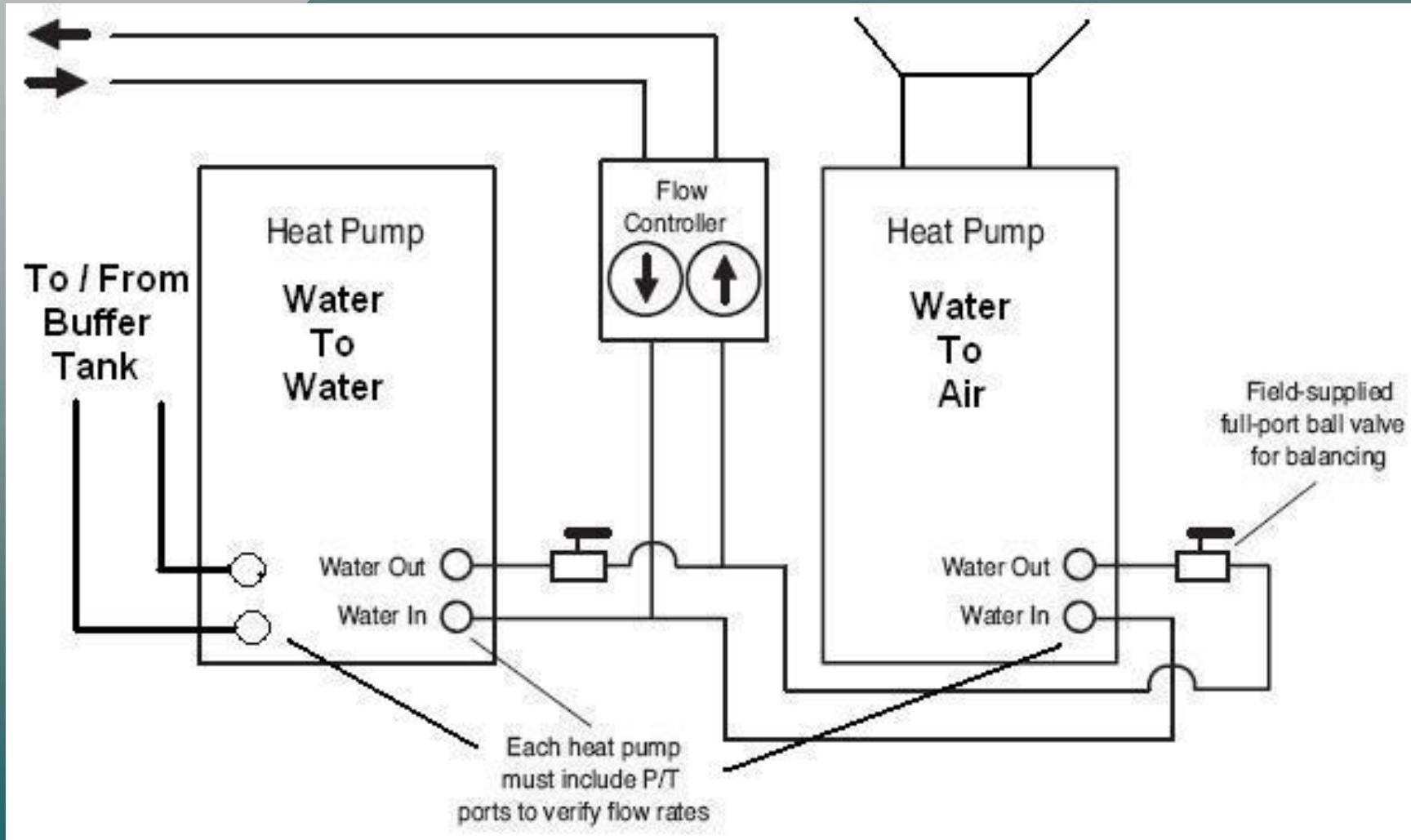
# Objectives: Select Heat Pumps Residential Water to Water

## Radiant Floor Heating Comfort Levels




# Objectives: Select Heat Pumps Residential Water to Water




Radiant  
Floor  
Install

# Objectives: Water to Water Typical Installation



# Objectives: Water to Water

## W to W with W to A Units



# Objectives: Select Heat Pumps Residential Water to Water

**Equipment Rated at GLHP or GWHP**

**Load / Heated Water at 86°F EWT & 104°F**

**Source at 32°F EWT or 50°F EWT**

| 60Hz Units |        | Ground Loop Heat Pump               |                                       |                                     |                                       | Ground Water Heat Pump |            |                       |            |
|------------|--------|-------------------------------------|---------------------------------------|-------------------------------------|---------------------------------------|------------------------|------------|-----------------------|------------|
| Model      |        | Heating                             |                                       |                                     |                                       | Heating                |            |                       |            |
|            |        | Indoor 86/95°F,<br>Outdoor 32/27°F* | Indoor 104/113°F,<br>Outdoor 32/27°F* | Indoor 86/95°F,<br>Outdoor 50/45°F* | Indoor 104/113°F,<br>Outdoor 50/45°F* |                        |            |                       |            |
|            |        | Indoor 30/35°C,<br>Outdoor 0/-3°C*  | Indoor 40/45°C,<br>Outdoor 0/-3°C*    | Indoor 30/35°C,<br>Outdoor 10/7°C*  | Indoor 40/45°C,<br>Outdoor 10/7°C*    |                        |            |                       |            |
|            |        | Capacity<br>Btuh [kW]               | COP<br>W/W                            | Capacity<br>Btuh [kW]               | COP<br>W/W                            | Capacity<br>Btuh [kW]  | COP<br>W/W | Capacity<br>Btuh [kW] | COP<br>W/W |
|            | THW010 | 32.6 [9.57]                         | 4.2                                   | 30.8 [9.03]                         | 3.3                                   | 42.6 [12.50]           | 5.2        | 39.9 [11.69]          | 4.1        |

# Objectives: Water to Water / 3 Ton

## Select Unit by Capacity at System Peak Conditions

### 30\*F EWT Source & 3 GPM / Ton and Leaving Load Temperature & 3 GPM / Ton

| SOURCE   |      |     | LOAD |              |             |             |          |       |     |              |             |             |             |          |       |              |     |             |             |             |          |       |     |     |     |
|----------|------|-----|------|--------------|-------------|-------------|----------|-------|-----|--------------|-------------|-------------|-------------|----------|-------|--------------|-----|-------------|-------------|-------------|----------|-------|-----|-----|-----|
| EWT<br>F | Flow |     | EWT  | Flow 4.5 GPM |             |             |          |       |     | Flow 6.8 GPM |             |             |             |          |       | Flow 9.0 GPM |     |             |             |             |          |       |     |     |     |
|          | GPM  | WPD |      | HC<br>Mbtuh  | Power<br>KW | HE<br>Mbtuh | LWT<br>F | COP   | WPD |              | HC<br>Mbtuh | Power<br>KW | HE<br>Mbtuh | LWT<br>F | COP   | WPD          |     | HC<br>Mbtuh | Power<br>KW | HE<br>Mbtuh | LWT<br>F | COP   | WPD |     |     |
|          |      | PSI | FT   |              |             |             |          |       | PSI | FT           |             |             |             |          |       | PSI          | FT  |             |             |             |          |       |     |     |     |
| 20       | 9.0  | 7.7 | 17.9 | 60           | 28.1        | 1.53        | 20.9     | 71.6  | 5.0 | 0.5          | 1.2         | 26.4        | 1.45        | 21.5     | 67.8  | 5.3          | 1.3 | 3.1         | 26.5        | 1.41        | 21.7     | 65.9  | 5.5 | 2.5 | 5.8 |
|          |      |     |      | 80           | 25.7        | 1.96        | 19.0     | 91.4  | 3.8 | 0.4          | 0.9         | 25.9        | 1.86        | 19.6     | 87.7  | 4.1          | 1.2 | 2.8         | 25.9        | 1.81        | 19.8     | 85.8  | 4.2 | 2.3 | 5.4 |
|          |      |     |      | 100          | 25.0        | 2.56        | 16.3     | 111.1 | 2.9 | 0.3          | 0.7         | 25.0        | 2.42        | 16.7     | 107.4 | 3.0          | 1.1 | 2.5         | 24.9        | 2.36        | 16.9     | 105.5 | 3.1 | 2.1 | 4.9 |
|          | 4.5  | 1.7 | 4.0  | 60           | 27.1        | 1.54        | 21.9     | 72.1  | 5.2 | 0.5          | 1.2         | 27.5        | 1.45        | 22.5     | 68.1  | 5.5          | 1.3 | 3.1         | 27.6        | 1.42        | 22.7     | 66.1  | 5.7 | 2.5 | 5.8 |
|          |      |     |      | 80           | 26.7        | 1.97        | 20.0     | 91.9  | 4.0 | 0.4          | 0.9         | 27.0        | 1.86        | 20.6     | 88.0  | 4.2          | 1.2 | 2.8         | 27.0        | 1.81        | 20.8     | 86.0  | 4.4 | 2.3 | 5.4 |
|          |      |     |      | 100          | 26.1        | 2.56        | 17.3     | 111.6 | 3.0 | 0.3          | 0.7         | 26.1        | 2.43        | 17.8     | 107.7 | 3.2          | 1.1 | 2.5         | 26.0        | 2.36        | 18.0     | 105.8 | 3.2 | 2.1 | 4.9 |
|          |      |     |      | 120          | 25.1        | 3.32        | 13.8     | 131.2 | 2.2 | 0.2          | 0.5         | 24.9        | 3.14        | 14.2     | 127.4 | 2.3          | 0.9 | 2.1         | 24.7        | 3.06        | 14.3     | 125.5 | 2.4 | 1.8 | 4.3 |
|          | 30   | 6.8 | 4.1  | 60           | 28.4        | 1.54        | 23.2     | 72.6  | 5.4 | 0.5          | 1.2         | 28.8        | 1.46        | 23.8     | 68.5  | 5.8          | 1.3 | 3.1         | 28.9        | 1.42        | 24.1     | 66.4  | 6.0 | 2.5 | 5.8 |
|          |      |     |      | 80           | 27.9        | 1.97        | 21.2     | 92.4  | 4.2 | 0.4          | 0.9         | 28.2        | 1.87        | 21.8     | 88.4  | 4.4          | 1.2 | 2.8         | 28.2        | 1.82        | 22.0     | 86.3  | 4.6 | 2.3 | 5.4 |
|          |      |     |      | 100          | 27.1        | 2.57        | 18.3     | 112.0 | 3.1 | 0.3          | 0.7         | 27.2        | 2.43        | 18.9     | 108.0 | 3.3          | 1.1 | 2.5         | 27.1        | 2.37        | 19.0     | 106.0 | 3.4 | 2.1 | 4.9 |
|          |      |     |      | 120          | 25.9        | 3.33        | 14.6     | 131.5 | 2.3 | 0.2          | 0.5         | 25.7        | 3.15        | 15.0     | 127.6 | 2.4          | 0.9 | 2.1         | 25.6        | 3.07        | 15.1     | 125.7 | 2.4 | 1.8 | 4.3 |
|          | 9.0  | 7.1 | 16.4 | 60           | 29.2        | 1.54        | 23.9     | 73.0  | 5.5 | 0.5          | 1.2         | 29.6        | 1.46        | 24.6     | 68.8  | 5.9          | 1.3 | 3.1         | 29.7        | 1.42        | 24.8     | 66.6  | 6.1 | 2.5 | 5.8 |
|          |      |     |      | 80           | 28.6        | 1.98        | 21.9     | 92.7  | 4.2 | 0.4          | 0.9         | 28.9        | 1.87        | 22.5     | 88.6  | 4.5          | 1.2 | 2.8         | 28.9        | 1.82        | 22.7     | 86.4  | 4.7 | 2.3 | 5.4 |
|          |      |     |      | 100          | 27.7        | 2.58        | 18.9     | 112.3 | 3.2 | 0.3          | 0.7         | 27.8        | 2.44        | 19.5     | 108.2 | 3.3          | 1.1 | 2.5         | 27.7        | 2.37        | 19.6     | 106.2 | 3.4 | 2.1 | 4.9 |
|          |      |     |      | 120          | 26.4        | 3.34        | 15.0     | 131.7 | 2.3 | 0.2          | 0.5         | 26.2        | 3.16        | 15.4     | 127.8 | 2.4          | 0.9 | 2.1         | 26.1        | 3.08        | 15.6     | 125.8 | 2.5 | 1.8 | 4.3 |
| 40       | 4.5  | 1.5 | 3.5  | 60           | 30.0        | 1.55        | 24.7     | 93.3  | 5.7 | 0.4          | 0.9         | 30.4        | 1.46        | 25.4     | 89.0  | 6.1          | 1.2 | 2.8         | 30.5        | 1.42        | 25.7     | 86.8  | 6.3 | 2.3 | 5.4 |
|          |      |     |      | 80           | 29.0        | 2.26        | 21.3     | 112.9 | 3.8 | 0.3          | 0.7         | 29.2        | 2.14        | 21.9     | 108.7 | 4.0          | 1.1 | 2.5         | 29.3        | 2.08        | 22.2     | 106.5 | 4.1 | 2.1 | 4.9 |
|          |      |     |      | 100          | 28.6        | 2.58        | 19.8     | 132.7 | 3.2 | 0.2          | 0.5         | 28.7        | 2.44        | 20.3     | 128.5 | 3.4          | 0.9 | 2.1         | 28.6        | 2.38        | 20.5     | 126.4 | 3.5 | 1.8 | 4.3 |
|          |      |     |      | 120          | 31.4        | 1.55        | 26.1     | 74.0  | 5.9 | 0.5          | 1.2         | 31.9        | 1.47        | 26.9     | 89.5  | 6.4          | 1.3 | 3.1         | 32.0        | 1.43        | 27.2     | 87.1  | 6.6 | 2.5 | 5.8 |
|          | 6.8  | 3.7 | 8.6  | 60           | 30.8        | 1.99        | 24.0     | 93.7  | 4.5 | 0.4          | 0.9         | 31.1        | 1.88        | 24.7     | 89.2  | 4.8          | 1.2 | 2.8         | 31.2        | 1.83        | 24.9     | 86.9  | 5.0 | 2.3 | 5.4 |
|          |      |     |      | 80           | 29.7        | 2.59        | 20.9     | 113.2 | 3.4 | 0.3          | 0.7         | 29.9        | 2.45        | 21.5     | 108.9 | 3.6          | 1.1 | 2.5         | 29.8        | 2.38        | 21.7     | 106.6 | 3.7 | 2.1 | 4.9 |
|          |      |     |      | 100          | 28.3        | 3.35        | 16.9     | 132.6 | 2.5 | 0.2          | 0.5         | 28.2        | 3.17        | 17.4     | 128.4 | 2.6          | 0.9 | 2.1         | 28.1        | 3.09        | 17.6     | 126.2 | 2.7 | 1.8 | 4.3 |
|          |      |     |      | 120          | 32.2        | 1.55        | 26.9     | 74.3  | 6.1 | 0.5          | 1.2         | 32.7        | 1.47        | 27.7     | 89.7  | 6.5          | 1.3 | 3.1         | 32.9        | 1.43        | 28.0     | 87.3  | 6.7 | 2.5 | 5.8 |
|          | 9.0  | 6.5 | 15.1 | 60           | 31.5        | 1.99        | 24.7     | 94.0  | 4.6 | 0.4          | 0.9         | 31.9        | 1.89        | 25.4     | 89.4  | 5.0          | 1.2 | 2.8         | 31.9        | 1.84        | 25.7     | 87.1  | 5.1 | 2.3 | 5.4 |
|          |      |     |      | 80           | 30.4        | 2.59        | 21.5     | 113.5 | 3.4 | 0.3          | 0.7         | 30.5        | 2.45        | 22.2     | 109.0 | 3.6          | 1.1 | 2.5         | 30.5        | 2.39        | 22.4     | 106.8 | 3.7 | 2.1 | 4.9 |
|          |      |     |      | 100          | 28.9        | 3.36        | 17.4     | 132.8 | 2.5 | 0.2          | 0.5         | 28.8        | 3.18        | 17.9     | 128.5 | 2.7          | 0.9 | 2.1         | 28.7        | 3.09        | 18.1     | 126.4 | 2.7 | 1.8 | 4.3 |
|          |      |     |      | 120          | 28.9        | 3.36        | 17.4     | 127.7 | 2.5 | 0.2          | 0.5         | 28.8        | 3.18        | 17.9     | 125.3 | 2.7          | 0.9 | 2.1         | 28.7        | 3.09        | 18.1     | 124.0 | 2.7 | 1.8 | 4.3 |

# •Objectives: GeoDesigner for System Design



# •Objectives: Job Info / Load Info

**Project Information**

**Job Information** **Load Information**

**Design Data**

| State/Prov. | City         |
|-------------|--------------|
| IA          | Evansville   |
| ID          | Fort Wayne   |
| IL          | Indianapolis |
| IN          | South Bend   |

**City Information**

| Degree Days | Deep Earth Temp F | Surface Swing F | Surface Swing Days | 1% Clg Design F | 97.5% Htg Design |
|-------------|-------------------|-----------------|--------------------|-----------------|------------------|
| 5699        | 55                | 23.6            | 34                 | 92              | 2                |

**Load Input**

|                 | Heating                        | Cooling | Hot Water |
|-----------------|--------------------------------|---------|-----------|
| Load Btu/Hr     | 73452                          | 35698   |           |
| Delta T         | 72 F                           | 25 F    | 125 F     |
| Set Point       | 72 F                           | 75 F    |           |
| Begin At        |                                | 73 F    |           |
| Sensible Btu/Hr |                                | 31218   | 4 #       |
| Users           | <input type="checkbox"/> Ratio |         |           |

**Internal Gains Estimator**

Base Electric Load per sq ft

Low   High

Solar Gains per sq ft

Low   High

Occupancy Level per sq ft

Low   High

Construction Quality

Low   High

Blg Bal Point  F Internal Gain  Btu/Hr

Min.  Heating Cd Factor  Max.

Continuous Fan  Yes  No

**Help** **JobTab** **Done**

# •Objectives: Main Screen, Utilities and Select System Types

**Utility Information**

**Energy Providers**

|                    |                 |                       |                    |
|--------------------|-----------------|-----------------------|--------------------|
| Utility - Electric | Sample Electric | Utility - Natural Gas | Sample Natural Gas |
| Source - Propane   | Sample Propane  | Source - Fuel Oil     | Sample Fuel Oil    |

**System Types**

| System Descriptions                                          | Geo A                            | Geo B                 | H.P.                             | Furnace                          | None                  |
|--------------------------------------------------------------|----------------------------------|-----------------------|----------------------------------|----------------------------------|-----------------------|
| <input type="checkbox"/> Gas-93%-Condensing-2stg-Vspd System | <input type="radio"/>            | <input type="radio"/> | <input type="radio"/>            | <input checked="" type="radio"/> | <input type="radio"/> |
| <input type="checkbox"/> 15 SEER - Scroll - R410a System     | <input type="radio"/>            | <input type="radio"/> | <input checked="" type="radio"/> | <input type="radio"/>            | <input type="radio"/> |
| <input type="checkbox"/> TT 049 Vspd / Vert 1 U-Tube - 0.75" | <input checked="" type="radio"/> | <input type="radio"/> | <input type="radio"/>            | <input type="radio"/>            | <input type="radio"/> |

|          |       |            |       |            |
|----------|-------|------------|-------|------------|
| Fuel Oil | 3.000 | Per Gallon | 3.000 | Per Gallon |
|----------|-------|------------|-------|------------|

**Help** **Done**

# Objectives: Select Heat Pumps Software

## Building Design Loads / Example

Notes: Any HVAC Customer

Notes: Any MN GSHP Asoc Dealer

### Design Data

Heating Load: 84,629 Btu/Hr

Htg Load Temp Diff: 85 Deg F

Cooling Load: 31,289 Btu/Hr

Clg Load Temp Diff: 20 Deg F

Sensible Cooling: 27,826 Btu/Hr

Reference City: Minneapolis, MN

Winter Design: -12 Deg F

Summer Design: 92 Deg F

Bldg Balance Temp: 61 Deg F

Avg Internal Gains: 11,067 Btu/Hr

Heating Setpoint: 72 Deg F

Cooling Setpoint: 75 Deg F

Begin Cooling At: 73 Deg F

Hot Water Setpoint: 130 Deg F

Hot Water Users: 4

Continuous Fan: No

Annual Heating: 169.1 Million Btu

Annual Cooling: 14.4 Million Btu

Annual Water Heating: 22.1 Million Btu

Daily Hot Water Use: 70 Gallons

# •Objectives: Select Geo Unit, Loop Type and H2O Heating Method

GeoDesigner A    GeoDesigner A    GeoDesigner A    GeoDesigner A

ClimateMaster  
TT 049 Vspd  
TT 049 Vspd  
TT 064 Vspd  
TT 072 Vspd  
TT Tons Vspd  
TTP 026 Vspd  
TTP 038 Vspd  
TTP 049 Vspd  
TTP 064 Vspd

ClimateMaster  
TT 049 Vspd  
Hot Water G  
Yes

ClimateMaster System  
TT 049 Vspd

Hot Water Generator  
Yes

Auxiliary Heat Selection  
Electric Fan Coil - Vspd

Auxiliary Heat Operation Mode  
Supplement Heat Pump

Geo Source  
Vert 1 U-Tube

Geo Source Selection  
Vert 1 U-Tube - 0.75"

Avg Depth  
100 FT

Auto-Size

Loop Min/Max  
32 95 Deg F

Water Heater Selection  
Gas - Tankless - Hi Eff

Gas - Tankless - Hi Eff

Gas - Tank - Std

Gas - Tankless - Hi Eff

Geothermal - Full Time

Oil - Tank - Std

Propane - Tank - Hi Eff

Propane - Tank - Std

Propane - Tankless - Hi Eff

Solar Thermal - Electric Tank

Geo Source  
Vert 1 U-Tube

Avg Depth

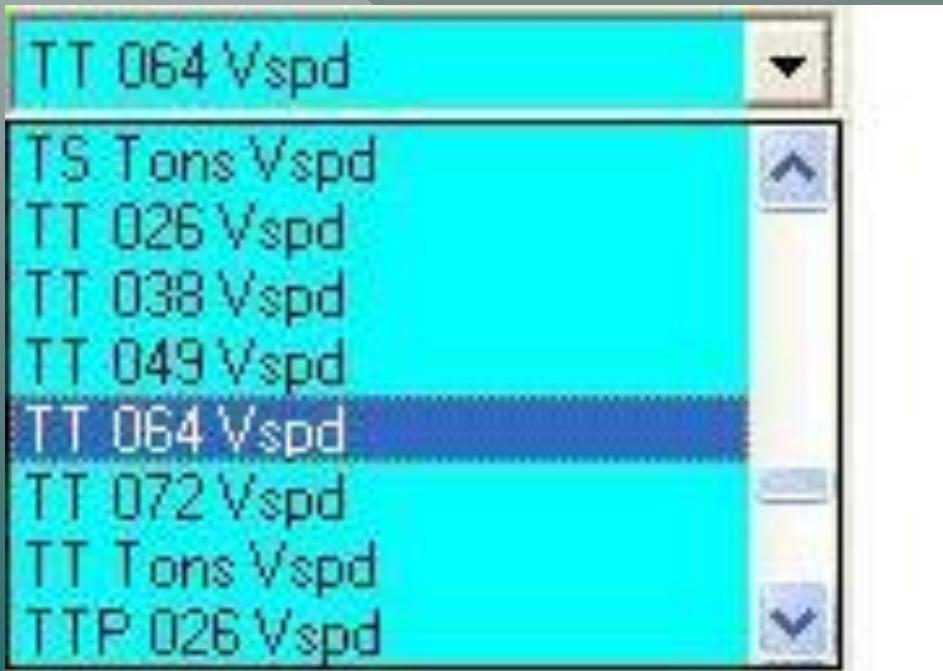
Auto-Size

Loop Min/Max

Soil  
0.90 - Damp

Soil Selection  
0.90 - Damp Sand/Gravel

Run    Bin Analysis...    Help    Done


Gas - Tankless - Hi Eff



# Objectives: Select Heat Pumps **Software Program**

Select Unit Via Drop Down Menu

Packaged, Split or W 2 W Units



# Objectives: Select Heat Pumps Software

Percentage of Annual Heating Load / 4 Ton

| TT 049 Vspd / Vert 1 U-Tube - 0.75" |            |                |
|-------------------------------------|------------|----------------|
| Geothermal Source                   | Heating    |                |
| Bore Length:                        | 1,010 Feet | Geothermal     |
| Max Cooling:                        | 68 Deg F   | 3.59 COP       |
| Avg Cooling:                        | 56 Deg F   | 85 % of Htg    |
| Avg Heating:                        | 33 Deg F   | \$874 Annual   |
| Min Heating:                        | 30 Deg F   | Aux Heating    |
| Deep Earth Temp:                    | 47 Deg F   | 100 % Eff      |
| Soil Conductivity:                  | 0.90       | 15 % of Htg    |
| Soil Diffusivity:                   | 0.64       | \$575 Annual   |
|                                     |            | Tot Heating    |
|                                     |            | \$1,449 Annual |

# Objectives: Select Heat Pumps Software

Percentage of Annual Heating Load / 5 Ton

| TT 064 Vspd / Vert 1 U-Tube - 0.75" |                   |                    |
|-------------------------------------|-------------------|--------------------|
| Geothermal Source                   | Heating           |                    |
| Bore Length:                        | <u>1,280 Feet</u> | 3.56 COP           |
| Max Cooling:                        | 63 Deg F          | <u>93 % of Htg</u> |
| Avg Cooling:                        | 53 Deg F          | \$972 Annual       |
| Avg Heating:                        | 35 Deg F          | 100 % Eff          |
| Min Heating:                        | 30 Deg F          | 7 % of Htg         |
| Deep Earth Temp:                    | 47 Deg F          | \$254 Annual       |
| Soil Conductivity:                  | 0.90              |                    |
| Soil Diffusivity:                   | 0.64              |                    |
|                                     | Tot Heating       | \$1,226 Annual     |

# Objectives: Select Heat Pumps Software

Percentage of Annual Heating Load / 6 Ton

| TT 072 Vspd / Vert 1 U-Tube - 0.75" |            |                |
|-------------------------------------|------------|----------------|
| Geothermal Source                   | Heating    |                |
| Bore Length:                        | 1,315 Feet | Geothermal     |
| Max Cooling:                        | 62 Deg F   | 3.00 COP       |
| Avg Cooling:                        | 53 Deg F   | 96 % of Htg    |
| Avg Heating:                        | 36 Deg F   | \$1,185 Annual |
| Min Heating:                        | 30 Deg F   | Aux Heating    |
| Deep Earth Temp:                    | 47 Deg F   | 100 % Eff      |
| Soil Conductivity:                  | 0.90       | 4 % of Htg     |
| Soil Diffusivity:                   | 0.64       | \$165 Annual   |
|                                     |            | Tot Heating    |
|                                     |            | \$1,350 Annual |

# Objectives: Select Heat Pumps Software

## Operating Cost / 4 Ton Versus 5 Ton

### Estimated Operating Cost Summary

| System                              | Heating Cost | Cooling Cost | Hot Water Cost | Constant Fan | Total Cost | Per Month |
|-------------------------------------|--------------|--------------|----------------|--------------|------------|-----------|
| TT 049 Vspd / Vert 1 U-Tube - 0.75" | \$1,449      | \$31         | \$305          | \$0          | \$1,786    | \$149     |
| TT 064 Vspd / Vert 1 U-Tube - 0.75" | \$1,226      | \$29         | \$319          | \$0          | \$1,574    | \$131     |
| No Option Selected                  | \$0          | \$0          | \$0            | \$0          | \$0        | \$0       |

Comments:

Sizing a GSHP System

1122012

MN Sizing GSHP 2012.ged

| Utility Cost          | Rate      | Summer | Winter |
|-----------------------|-----------|--------|--------|
| Electric - Geothermal | \$/kwh    | .075   | .075   |
| Electric - Heat Pump  | \$/kwh    | .075   | .075   |
| Electric - Furnace    | \$/kwh    | .075   | .075   |
| Natural Gas           | \$/therm  | 1.00   | 1.00   |
| Propane               | \$/gallon | 2.25   | 2.25   |
| Fuel Oil              | \$/gallon | 3.00   | 3.00   |

# Objectives: Select Heat Pumps Software

## Operating Cost / 5 Ton Versus 6 Ton

### Estimated Operating Cost Summary

| System                              | Heating Cost | Cooling Cost | Hot Water Cost | Constant Fan | Total Cost | Per Month |
|-------------------------------------|--------------|--------------|----------------|--------------|------------|-----------|
| TT 064 Vspd / Vert 1 U-Tube - 0.75" | \$1,226      | \$29         | \$319          | \$0          | \$1,574    | \$131     |
| TT 072 Vspd / Vert 1 U-Tube - 0.75" | \$1,350      | \$34         | \$327          | \$0          | \$1,710    | \$143     |
| No Option Selected                  | \$0          | \$0          | \$0            | \$0          | \$0        | \$0       |

# Objectives: Select Heat Pumps Software

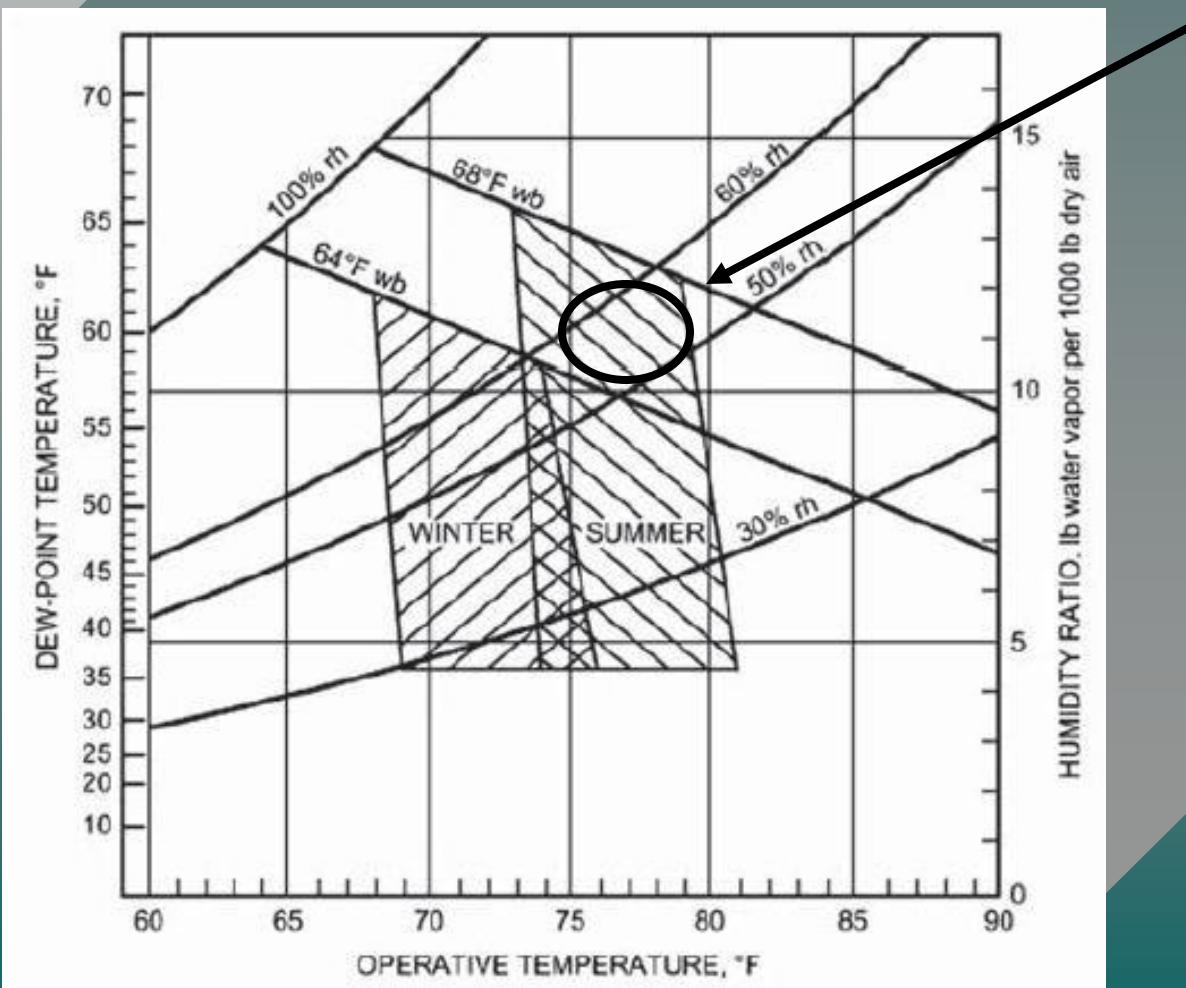
## Operating Cost 5 Ton Geo VS Gas AC & ASHP

### Estimated Operating Cost Summary

| System                              | Heating Cost | Cooling Cost | Hot Water Cost | Constant Fan | Total Cost | Per Month |
|-------------------------------------|--------------|--------------|----------------|--------------|------------|-----------|
| Gas-93%-Condensing-2stg-Vspd System | \$1,972      | \$105        | \$381          | \$0          | \$2,458    | \$205     |
| 14 SEER - Scroll - R410a System     | \$2,219      | \$110        | \$551          | \$0          | \$2,881    | \$240     |
| TT 064 Vspd / Vert 1 U-Tube - 0.75" | \$1,226      | \$29         | \$319          | \$0          | \$1,574    | \$131     |

Comments:

Sizing a GSHP System


1122012

MN Sizing GSHP 2012.ged

| Utility Cost          | Rate      | Summer | Winter |
|-----------------------|-----------|--------|--------|
| Electric - Geothermal | \$/kwh    | .075   | .075   |
| Electric - Heat Pump  | \$/kwh    | .075   | .075   |
| Electric - Furnace    | \$/kwh    | .075   | .075   |
| Natural Gas           | \$/therm  | 1.00   | 1.00   |
| Propane               | \$/gallon | 2.25   | 2.25   |
| Fuel Oil              | \$/gallon | 3.00   | 3.00   |

# Objectives: Select Heat Pumps Latent Capacity

Typical Indoor Humidity Levels Maintained at 50/55% RH



# Objectives: Select Heat Pumps Latent Load

## Determine Latent Cooling Load

Notes: Any HVAC Customer

Notes: Any MN GSHP Asoc Dealer

### Design Data

Heating Load: 84,629 Btu/Hr

Htg Load Temp Diff: 85 Deg F

Cooling Load: 31,289 Btu/Hr

Clg Load Temp Diff: 20 Deg F

Sensible Cooling: 27,826 Btu/Hr

Reference City: Minneapolis, MN

Winter Design: -12 Deg F

Summer Design: 92 Deg F

Bldg Balance Temp: 61 Deg F

Avg Internal Gains: 11,067 Btu/Hr

Heating Setpoint: 72 Deg F

Cooling Setpoint: 75 Deg F

Begin Cooling At: 73 Deg F

Hot Water Setpoint: 130 Deg F

Hot Water Users: 4

Continuous Fan: No

Annual Heating: 169.1 Million Btu

Annual Cooling: 14.4 Million Btu

Annual Water Heating: 22.1 Million Btu

Daily Hot Water Use: 70 Gallons

**Latent Load =**  
**Total Minus**  
**Sensible**

**31,289 –**  
**27,826 =**  
**3,463 Latent**

# Objectives: Select Heat Pumps

## Check Spec Catalog Data at Design EWT

| EWT °F | GPM  | WPD |      | COOLING - EAT 80/67 °F |                           |              |              |              |              |     | HEATING - EAT 70°F |                           |              |              |              |              |              |            |
|--------|------|-----|------|------------------------|---------------------------|--------------|--------------|--------------|--------------|-----|--------------------|---------------------------|--------------|--------------|--------------|--------------|--------------|------------|
|        |      | PSI | FT   | Airflow CFM            | TC                        | SC           | kW           | HR           | EER          | HWC | Airflow CFM        | HC                        | kW           | HE           | LAT          | COP          | HWC          |            |
| 20     | 7.5  | 0.8 | 1.9  | 1580<br>1825           | Operation not recommended |              |              |              |              |     |                    | Operation not recommended |              |              |              |              |              |            |
|        | 11.3 | 2.4 | 5.5  | 1580<br>1825           |                           |              |              |              |              |     |                    | Operation not recommended |              |              |              |              |              |            |
|        | 15.0 | 5.0 | 11.6 | 1580<br>1825           |                           |              |              |              |              |     |                    | 1750<br>2050              | 41.0<br>41.8 | 3.86<br>3.71 | 27.8<br>29.1 | 91.7<br>88.9 | 3.12<br>3.30 | 4.0<br>3.5 |
| 30     | 7.5  | 0.6 | 1.5  | 1580<br>1825           | 66.0<br>67.3              | 42.1<br>45.6 | 2.79<br>2.90 | 75.5<br>77.2 | 23.7<br>23.2 | -   | 1750<br>2050       | 44.6<br>45.4              | 3.87<br>3.73 | 31.4<br>32.7 | 93.6<br>90.5 | 3.38<br>3.57 | 4.1<br>3.6   |            |
|        | 11.3 | 2.3 | 5.3  | 1580<br>1825           | 67.0<br>68.3              | 42.6<br>46.2 | 2.67<br>2.77 | 76.1<br>77.8 | 25.1<br>24.7 | -   | 1750<br>2050       | 46.4<br>47.3              | 3.92<br>3.77 | 33.0<br>34.4 | 94.6<br>91.4 | 3.47<br>3.67 | 4.1<br>3.5   |            |
|        | 15.0 | 4.8 | 11.0 | 1580<br>1825           | 68.4<br>69.7              | 43.5<br>47.1 | 2.61<br>2.71 | 77.3<br>78.9 | 26.2<br>25.7 | -   | 1750<br>2050       | 47.4<br>48.3              | 3.95<br>3.80 | 34.0<br>35.4 | 95.1<br>91.8 | 3.52<br>3.73 | 4.0<br>3.5   |            |

Cooling 5 Ton at 1825 CFM

|    |      |     |     |              |              |              |              |              |              |            |              |              |              |              |                |              |            |
|----|------|-----|-----|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|----------------|--------------|------------|
| 60 | 7.5  | 0.3 | 0.8 | 1580<br>1825 | 66.0<br>67.3 | 43.9<br>47.6 | 3.58<br>3.72 | 78.2<br>80.0 | 18.5<br>18.1 | 2.9<br>3.0 | 1750<br>2050 | 63.0<br>64.2 | 4.47<br>4.29 | 47.8<br>49.5 | 103.3<br>99.0  | 4.14<br>4.38 | 4.8<br>4.2 |
|    | 11.3 | 2.1 | 4.7 | 1580<br>1825 | 67.5<br>68.8 | 44.3<br>48.0 | 3.36<br>3.50 | 78.9<br>80.7 | 20.1<br>19.7 | 2.5<br>2.5 | 1750<br>2050 | 66.0<br>67.2 | 4.55<br>4.38 | 50.5<br>52.7 | 104.9<br>102.7 | 4.25<br>4.50 | 4.7<br>4.1 |
|    | 15.0 | 4.1 | 9.4 | 1580<br>1825 | 68.0<br>69.4 | 44.4<br>48.1 | 3.26<br>3.39 | 79.2<br>80.9 | 20.9<br>20.5 | 2.1<br>2.1 | 1750<br>2050 | 67.0<br>68.9 | 4.00<br>4.43 | 52.8<br>53.8 | 106.2<br>101.1 | 4.31<br>4.57 | 4.7<br>4.0 |
| 70 | 7.5  | 0.3 | 0.7 | 1580<br>1825 | 63.3<br>64.6 | 43.1<br>46.7 | 3.92<br>4.08 | 76.7<br>78.5 | 16.1<br>15.8 | 4.0<br>4.0 | 1750<br>2050 | 69.5<br>70.9 | 4.66<br>4.48 | 53.6<br>55.7 | 106.8<br>102.7 | 4.38<br>4.55 | 5.3<br>4.6 |
|    | 11.3 | 2.0 | 4.5 | 1580<br>1825 | 65.3<br>66.5 | 43.7<br>47.3 | 3.68<br>3.82 | 77.8<br>79.6 | 17.7<br>17.4 | 3.4<br>3.4 | 1750<br>2050 | 73.0<br>74.3 | 4.76<br>4.58 | 56.7<br>58.7 | 108.6<br>103.6 | 4.49<br>4.76 | 5.2<br>4.5 |
|    | 15.0 | 3.9 | 8.9 | 1580<br>1825 | 66.2<br>67.5 | 44.0<br>47.6 | 3.56<br>3.70 | 78.3<br>80.1 | 18.6<br>18.2 | 2.8<br>2.9 | 1750<br>2050 | 75.0<br>76.5 | 4.82<br>4.63 | 59.5<br>60.5 | 109.7<br>105.5 | 4.56<br>4.83 | 5.1<br>4.4 |
| 80 | 7.5  | 0.2 | 0.5 | 1580<br>1825 | 60.0<br>61.2 | 41.9<br>45.4 | 4.33<br>4.50 | 74.8<br>76.6 | 13.9<br>13.6 | 5.2<br>5.3 | 1750<br>2050 | 76.2<br>77.6 | 4.86<br>4.67 | 59.6<br>61.7 | 110.3<br>105.1 | 4.60<br>4.87 | 5.8<br>5.1 |
|    | 11.3 | 1.9 | 4.4 | 1580<br>1825 | 62.3<br>63.5 | 42.7<br>46.3 | 4.05<br>4.21 | 76.1<br>77.9 | 15.4<br>15.1 | 4.4<br>4.5 | 1750<br>2050 | 78.2<br>81.7 | 4.94<br>4.79 | 63.2<br>65.4 | 112.5<br>106.9 | 4.72<br>5.00 | 5.7<br>5.0 |
|    | 15.0 | 3.6 | 8.4 | 1580         | 63.4         | 43.1         | 3.91         | 76.8         | 16.2         | 3.6        | 1750         | 82.6         | 5.05         | 65.3         | 113.7          | 4.79         | 5.6        |

Latent = TC - SC

69,440 - 48,100 =

11,340 LATENT

CAPACITY

# Objectives: Select Heat Pumps Software

## Cooling Run Time for Dehumidification

### Temperature Bin Analysis

TT 064 Vspd / Vert 1 U-Tube - 0.75"

| Outdoor Air Temp | Annual Weather Hours | Space Load Btu/Hr | Hot Water Load Btu/Hr | Geo Source Temp | Htg - Clg Capacity Btu/Hr | H.W. Gen Capacity Btu/Hr | Geo Run Time | Geo Operating Cost | Aux Heating Cost | Aux Hot Water Cost |
|------------------|----------------------|-------------------|-----------------------|-----------------|---------------------------|--------------------------|--------------|--------------------|------------------|--------------------|
| 112              |                      |                   |                       |                 |                           |                          |              |                    |                  |                    |
| 107              |                      |                   |                       |                 |                           |                          |              |                    |                  |                    |
| 102              |                      |                   |                       |                 |                           |                          |              |                    |                  |                    |
| 97               | 1                    | 33,311            | 2,521                 | 63              | 50,499                    | 2,880                    | 66%          | \$0.12             |                  | \$0.02             |
| 92               | 32                   | 28,256            | 2,521                 | 60              | 51,238                    | 2,583                    | 55%          | \$3.22             |                  | \$0.88             |
| 87               | 127                  | 23,200            | 2,521                 | 57              | 51,976                    | 2,286                    | 45%          | \$9.99             |                  | \$4.76             |
| 82               | 267                  | 18,145            | 2,521                 | 53              | 52,712                    | 1,990                    | 34%          | \$15.64            |                  | \$12.24            |
| 77               | 430                  | 13,089            | 2,521                 | 50              | 53,446                    | 1,695                    | 24%          |                    |                  | \$22.61            |
| 72               | 617                  |                   | 2,521                 |                 |                           |                          |              |                    |                  | \$38.84            |

50% Run Time?

# Dehumidification Feature

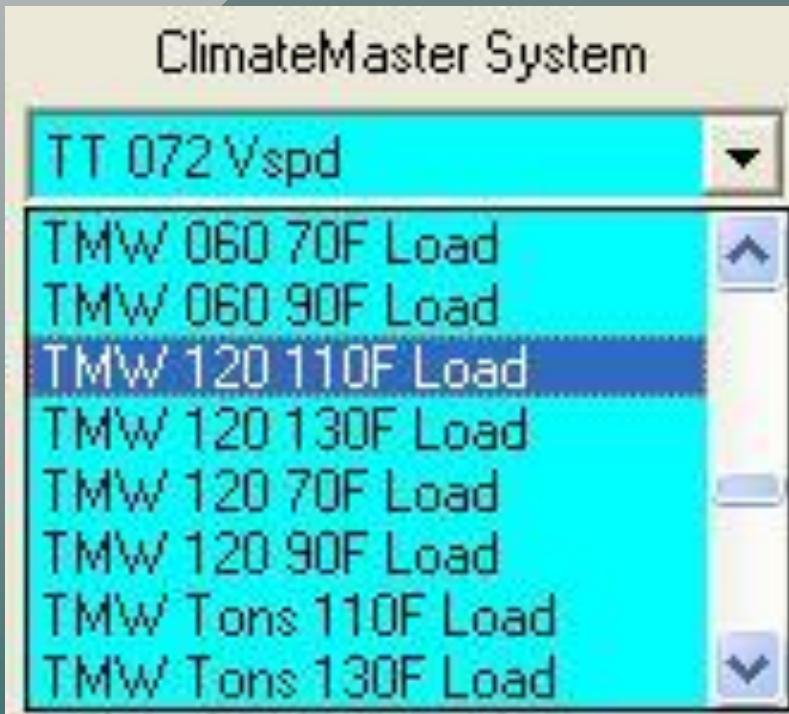
## Unit Sized for Full Heating/Oversized Cooling

**Dehumidification Mode** settings: The dehumidification mode setting provides field selection of humidity control. When operating in the normal mode, the cooling airflow settings are determined by the cooling tap setting above. When dehumidification is enabled there is a reduction in airflow in cooling to increase the moisture removal of the heat pump. Consult submittal data or specifications catalog for the specific unit series and model to correlate speed tap to airflow in CFM. The dehumidification mode can be enabled in two ways.

**Constant Dehumidification Mode:** When the dehumidification mode is selected (via DIP switch or jumper setting), the ECM motor will operate with a multiplier applied to the cooling CFM settings (approx. 20-25% lower airflow). Any time the unit is running in the cooling mode, it will operate at the lower airflow to improve latent capacity. The "DEHUM" LED will be illuminated at all times. Heating airflow is not affected. NOTE: Do not select dehumidification mode if cooling

# Dehumidification Feature

## Unit Sized for Heating/Oversized Cooling


| Model | Max ESP (in. wg) | Fan Motor (hp) | Tap Setting | Cooling Mode |       |      | Dehumid Mode |       |      | Heating Mode |       |      | AUX CFM | Aux/Emerg Mode |
|-------|------------------|----------------|-------------|--------------|-------|------|--------------|-------|------|--------------|-------|------|---------|----------------|
|       |                  |                |             | Stg 1        | Stg 2 | Fan  | Stg 1        | Stg 2 | Fan  | Stg 1        | Stg 2 | Fan  |         |                |
| 026   | 0.50             | 1/2            | 4           | 810          | 950   | 475  | 630          | 740   | 475  | 920          | 1060  | 475  | 4       | 1060           |
|       | 0.50             | 1/2            | 3           | 725          | 850   | 425  | 560          | 660   | 425  | 825          | 950   | 425  | 3       | 950            |
|       | 0.50             | 1/2            | 2           | 620          | 730   | 370  | 490          | 570   | 370  | 710          | 820   | 370  | 2       | 820            |
|       | 0.50             | 1/2            | 1           | 520          | 610   | 300  |              |       |      | 600          | 690   | 300  | 1       | 690            |
| 038   | 0.50             | 1/2            | 4           | 1120         | 1400  | 700  | 870          | 1090  | 700  | 1120         | 1400  | 700  | 4       | 1400           |
|       | 0.50             | 1/2            | 3           | 1000         | 1250  | 630  | 780          | 980   | 630  | 1000         | 1250  | 630  | 3       | 1350           |
|       | 0.50             | 1/2            | 2           | 860          | 1080  | 540  | 670          | 840   | 540  | 860          | 1080  | 540  | 2       | 1350           |
|       | 0.50             | 1/2            | 1           | 730          | 900   | 450  |              |       |      | 730          | 900   | 450  | 1       | 1350           |
| 049   | 0.75             | 1              | 4           | 1460         | 1730  | 870  | 1140         | 1350  | 870  | 1560         | 1850  | 870  | 4       | 1850           |
|       | 0.75             | 1              | 3           | 1300         | 1550  | 780  | 1020         | 1210  | 780  | 1400         | 1650  | 780  | 3       | 1660           |
|       | 0.75             | 1              | 2           | 1120         | 1330  | 670  | 870          | 1040  | 670  | 1200         | 1430  | 670  | 2       | 1430           |
|       | 0.75             | 1              | 1           | 940          | 1120  | 560  |              |       |      | 1010         | 1200  | 560  | 1       | 1350           |
| 064   | 0.75             | 1              | 4           | 1670         | 2050  | 1020 | 1300         | 1600  | 1020 | 1860         | 2280  | 1020 | 4       | 2280           |
|       | 0.75             | 1              | 3           | 1500         | 1825  | 920  | 1160         | 1430  | 920  | 1650         | 2050  | 920  | 3       | 2040           |
|       | 0.75             | 1              | 2           | 1280         | 1580  | 790  | 1000         | 1230  | 790  | 1430         | 1750  | 790  | 2       | 1750           |
|       | 0.75             | 1              | 1           | 1080         | 1320  | 660  |              |       |      | 1200         | 1470  | 660  | 1       | 1470           |

064

# Objectives: Select Heat Pumps

## Software: W to W

Select Unit Via Drop Down Menu



# Objectives: Select Heat Pumps Software

## Operating Cost / 5 Ton W 2 W Versus 5 Ton W to A

### Estimated Operating Cost Summary

| System                                    | Heating Cost | Cooling Cost | Hot Water Cost | Constant Fan | Total Cost | Per Month |
|-------------------------------------------|--------------|--------------|----------------|--------------|------------|-----------|
| TMW 060 110F Load / Vert 1 U-Tube - 0.75" | \$1,283      | \$11         | \$162          | \$0          | \$1,455    | \$121     |
| TT 064 Vspd / Vert 1 U-Tube - 0.75"       | \$1,226      | \$29         | \$319          | \$0          | \$1,574    | \$131     |
| No Option Selected                        | \$0          | \$0          | \$0            | \$0          | \$0        | \$0       |

Comments:

Sizing a GSHP System

1122012

MN Sizing GSHP 2012.ged

| Utility Cost          | Rate      | Summer | Winter |
|-----------------------|-----------|--------|--------|
| Electric - Geothermal | \$/kwh    | .075   | .075   |
| Electric - Heat Pump  | \$/kwh    | .075   | .075   |
| Electric - Furnace    | \$/kwh    | .075   | .075   |
| Natural Gas           | \$/therm  | 1.00   | 1.00   |
| Propane               | \$/gallon | 2.25   | 2.25   |
| Fuel Oil              | \$/gallon | 3.00   | 3.00   |

# Objectives: Design Loop System

## **Common Information**

Loop Design

Basic Design Rules

**3 GPM Per Ton of Equipment**

Pressure / Temperature Ports on ALL Units

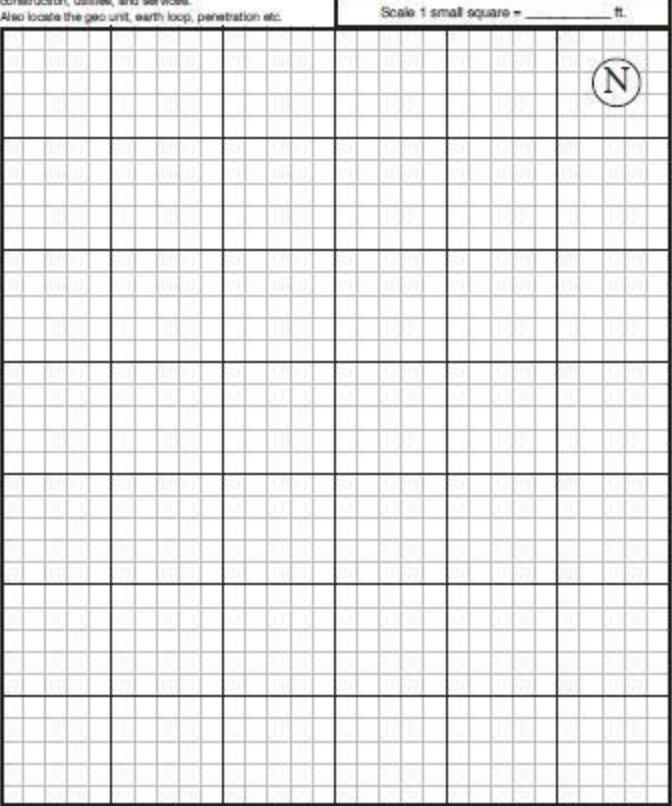
**1 - 3/4" PE Circuit per ton / 3 GPM**

1 1/4" or 2" PE Pipe for Supply & Return

Reverse Return Header for Equal Flow

# Objectives: Design Loop System

## Complete a Site Survey


**Geo Site Survey**

Client Name: \_\_\_\_\_ Address: \_\_\_\_\_ Date: \_\_\_\_\_  
Phone: \_\_\_\_\_ Surveyed by: \_\_\_\_\_  New construction  Retrofit  
GeoDesigner performed by: \_\_\_\_\_ Phone: \_\_\_\_\_ Date: \_\_\_\_\_  
Soil conditions: \_\_\_\_\_  
Special conditions and requirements: \_\_\_\_\_ Permit number: \_\_\_\_\_  
Owner's preference on location of loop: \_\_\_\_\_

Locate property lines, existing structures, future construction, utilities, and services.  
Also locate the geo unit, earth loop, penetration etc.

Scale 1 small square = \_\_\_\_\_ ft.

**N**



**Legend:**

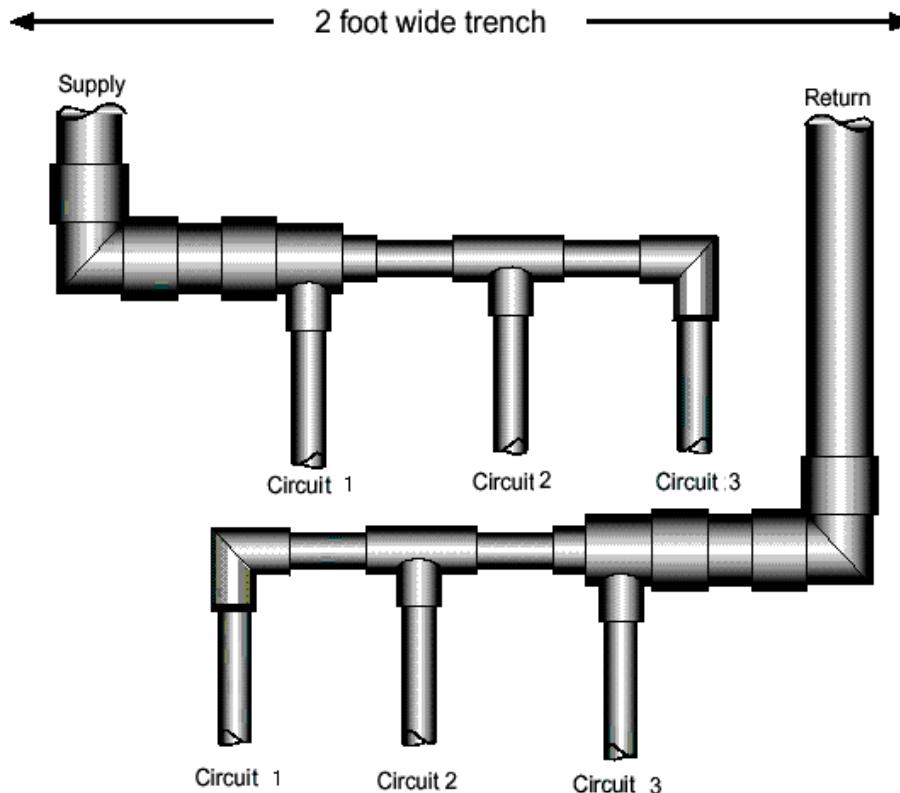
- Power Lines:  
 overhead  
 underground
- Telephone Lines:  
 overhead  
 underground
- TV Cable:  
 overhead  
 underground
- Water Well Depth \_\_\_\_\_ ft.
- City Water
- Natural Gas
- Propane
- City Sewer
- Private Sewer
- Easements
- Fuel Lines
- Lawn Sprinkler
- Drain Tile
- Bldg. Penetration
- Unit location
- Existing condensing unit
- Pond Size \_\_\_\_\_  
Avg. Depth \_\_\_\_\_  
Min. Depth \_\_\_\_\_
- Other \_\_\_\_\_

Establish Which Type of Loop Will Work best for This Design

Follow Check List on the Geo Site Survey Form

Plan a Completed "As Built" Drawing for Entire Ground Loop

# Objectives: Design Loop System Common Information


**GeoDesigner Worksheet**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|--------------|-------|------------------|-------|--------------|-------|----------|-------|-----------|-------|
|  <b>CLIMATEM</b><br><b>Geothermal Heat P</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | <b>Dealer Information</b><br>Name: _____<br>Address: _____<br>City/State/Zip: _____<br>Phone: _____<br>Fax: _____<br>Date: _____                                                                                           |  | <b>Client Information</b><br>Name: _____<br>Address: _____<br>City/State/Zip: _____<br>Phone: _____<br>Fax: _____<br>Building Notes: _____<br>Project #: _____                                                                                                                                                                                                                                                                              |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| How many people in home<br>Existing equipment<br>Any allergies or concerns<br>Home ever too hot or cold<br>Any hot or cold water system<br>Do you want a system<br>Concerned with energy<br>Aware of the impact<br>Any special needs<br>Concerned with energy<br>Des<br>Aware of the impact<br>Any special needs<br>Des<br>Any special safety<br>Des<br>A lake or pond nearby<br>Special trees or plants<br>Are you aware of<br>When do you plan to<br>Do you know about<br>Do either of you<br>What types of energy<br>What are you considering<br>How long have you<br>Typical savings from<br>invested money<br>If financing, what<br>What is the interest<br>What is the term<br>Would you be interested<br>What are the 5 reasons<br><input type="checkbox"/> low cost operation<br><input type="checkbox"/> clean operation<br><input type="checkbox"/> odorless<br><input type="checkbox"/> no noisy outdoor<br><input type="checkbox"/> free hot water<br><input type="checkbox"/> environmentally friendly<br>If you had to choose<br>Are there any other<br>If yes<br>_____<br><br>How many bids<br>How many bids<br>How many more<br><br>Customer: _____ Customer: _____ |        | <b>Load Information</b><br>City Selection: _____<br><table border="1"> <tr> <td>Load</td> <td>dT</td> <td>Setpt</td> </tr> </table><br>Heating: _____<br>Cooling: _____<br><br>Sens Clg Load: _____<br>Begin Clg At: _____ |  | Load                                                                                                                                                                                                                                                                                                                                                                                                                                        | dT | Setpt  | <b>Internal Gains (1-low 5-high):</b><br>Base Electric Load per ft <sup>2</sup> : _____<br>Solar Gain per ft <sup>2</sup> : _____<br>Occupancy per ft <sup>2</sup> : _____<br>Construct or Load per ft <sup>2</sup> : _____<br><br>Hot Water Setpoint: _____<br><br>Hot Water Users: _____ |               |       |              |       |                  |       |              |       |          |       |           |       |
| Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dT     | Setpt                                                                                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| <b>Geo A Information</b><br>Unit Model: _____<br># of Tons: _____<br>HWG: _____<br>Ultra Hybrid: _____<br><br>Loop Type: _____<br>Avg Depth: _____<br>Trench/Bore: _____<br><br>Loop Temp Range: _____<br>Soil Type: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | <b>Geo B Information</b><br>Unit Model: _____<br># of Tons: _____<br>HWG: _____<br>Ultra Hybrid: _____<br><br>Loop Type: _____<br>Avg Depth: _____<br>Trench/Bore: _____<br><br>Loop Temp Range: _____<br>Soil Type: _____ |  | <b>Utility Rates</b><br><table border="1"> <tr> <td>Summer</td> <td>Winter</td> </tr> <tr> <td>Electric Geo:</td> <td>_____</td> </tr> <tr> <td>Electric HP:</td> <td>_____</td> </tr> <tr> <td>Electric Fossil:</td> <td>_____</td> </tr> <tr> <td>Natural Gas:</td> <td>_____</td> </tr> <tr> <td>Propane:</td> <td>_____</td> </tr> <tr> <td>Fuel Oil:</td> <td>_____</td> </tr> </table><br><small>Denotes required information</small> |    | Summer | Winter                                                                                                                                                                                                                                                                                     | Electric Geo: | _____ | Electric HP: | _____ | Electric Fossil: | _____ | Natural Gas: | _____ | Propane: | _____ | Fuel Oil: | _____ |
| Summer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Winter |                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| Electric Geo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _____  |                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| Electric HP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _____  |                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| Electric Fossil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _____  |                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| Natural Gas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _____  |                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| Propane:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _____  |                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| Fuel Oil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _____  |                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |
| <b>Heat Pump Information</b><br>Model: _____<br>ARI Clg Capacity: _____<br>Cut Off Temp: _____<br>Aux Heat Type: _____<br>Input Capacity: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | <b>Furnace Information</b><br>Furnace Model: _____<br>Input Capacity: _____<br>Air Cond Type: _____<br>ARI Clg Capacity: _____                                                                                             |  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |                                                                                                                                                                                                                                                                                            |               |       |              |       |                  |       |              |       |          |       |           |       |

Complete the Questionnaire  
 Determine Proper Location and Method for Building Entry with Supply & Return Piping System And Location of Pump Station

# Objectives: Design Loop System Reverse Return

## Loop Design



# Objectives: Design Loop System

## Vertical

### Vertical Loops

#### **One bore per ton**

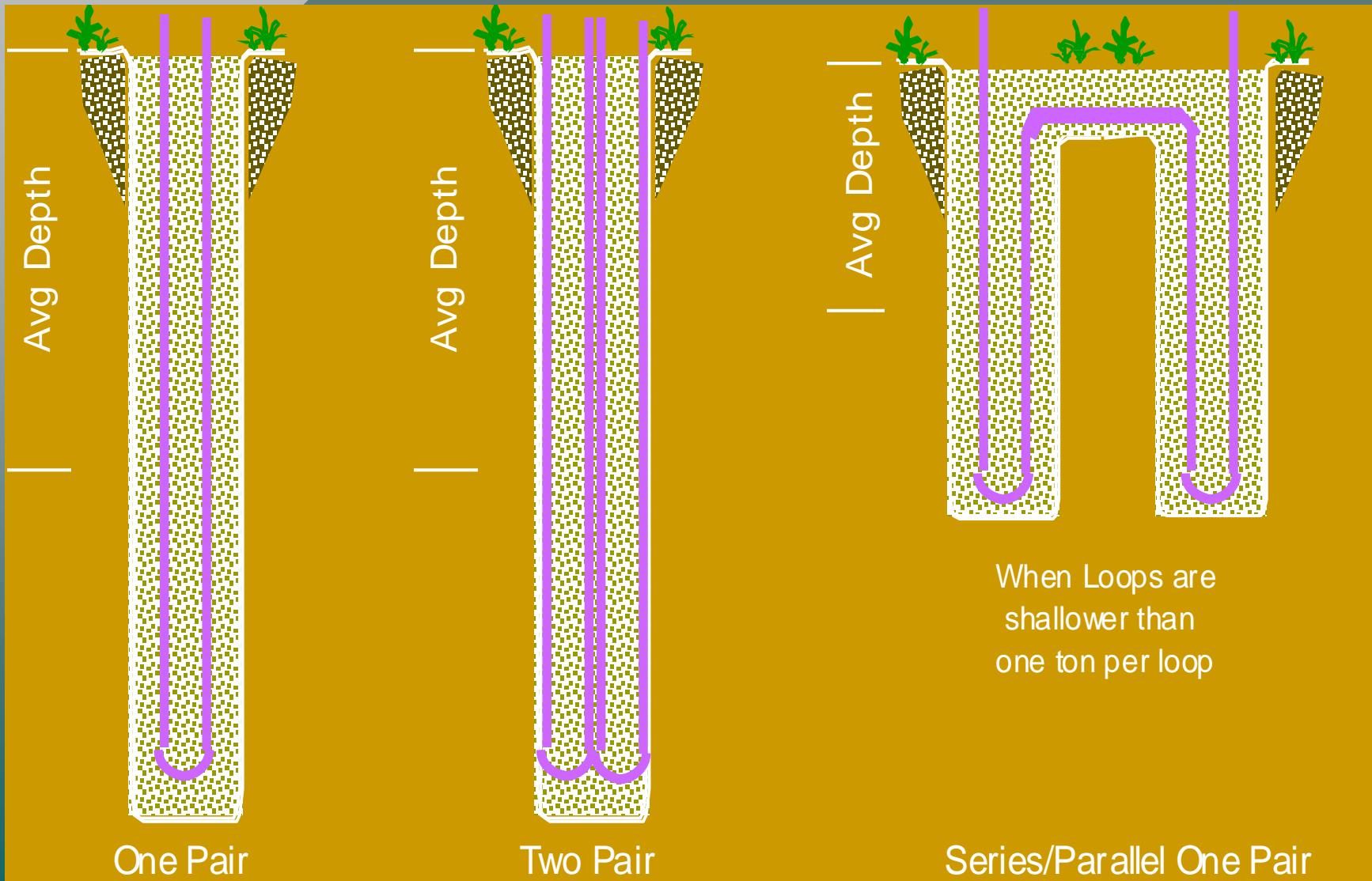
Bore hole spacing 10 ft minimum

#### **One circuit at 3 GPM flow per ton for 3/4" and 1" circuits**

U-Bend pipe sizes 3/4" & 1" ID

ASTM PE3408 HD Geothermal PE pipe

Many states require bentonite grouting


Some locales restrict drilling

Bore Hole Depth (typical)

**North 150 -300 ft/ton**

South 200 - 450 ft/ton

# Objectives: Design Loop System Software Program



# Objectives: Design Loop System Vertical

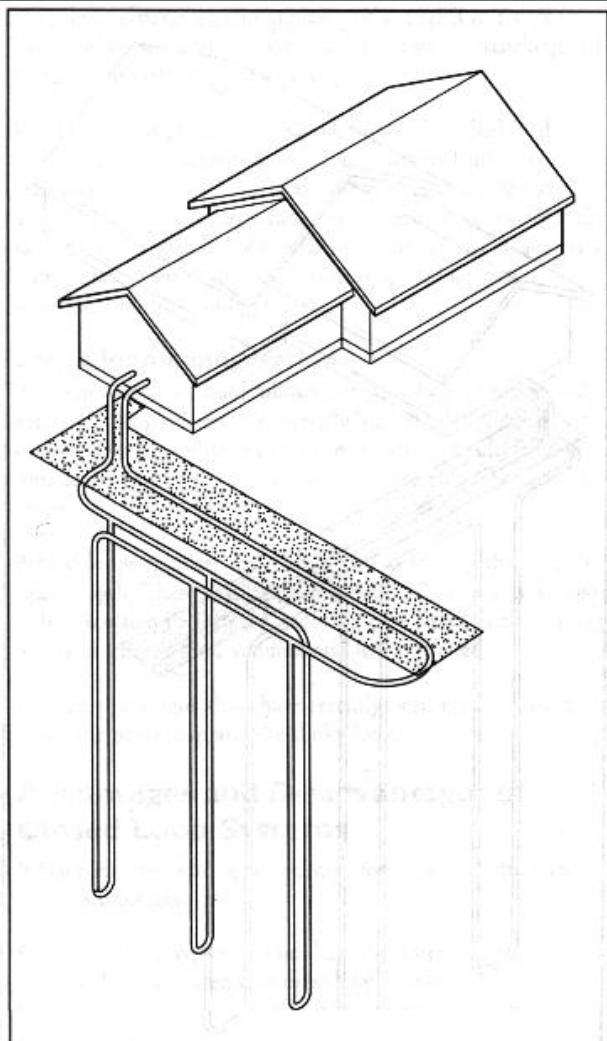


Drilling



Pipe Loop  
Insertion




Heat Fusing



Pressure  
Testing

# •Multiple Hole Vertical Loop

- Supply & Return Piping exit straight out from building foundations- 10 feet min.
- Header Pit should be 10 feet min. from building foundation



- Simple drawing shows typical bore hole/circuit layout.
- Actual Header Manifold less than 24" long.
- Parallel circuit piping 3/4" & 1.0" dia. Pipe sizes

# Objectives: Design Loop System Vertical

Our 5 Ton Design with Vertical Loops

**One bore per ton**

Bore hole spacing 10 ft  
minimum

**One circuit at 3 GPM  
flow per ton for 3/4"  
circuits**

**1280 / 5 Tons =  
255 Feet of  
Bore per Hole**

**5 Circuits at 510 FT each**

| TT 064 Vspd / Vert 1 U-Tube - 0.75" |            |                |
|-------------------------------------|------------|----------------|
| Geothermal Source                   | Heating    |                |
| Bore Length:                        | 1,280 Feet | Geothermal     |
| Max Cooling:                        | 63 Deg F   | 3.56 COP       |
| Avg Cooling:                        | 53 Deg F   | 93 % of Htg    |
| Avg Heating:                        | 35 Deg F   | \$972 Annual   |
| Min Heating:                        | 30 Deg F   |                |
| Deep Earth Temp:                    | 47 Deg F   |                |
| Soil Conductivity:                  | 0.90       | Aux Heating    |
| Soil Diffusivity:                   | 0.64       | 100 % Eff      |
|                                     |            | 7 % of Htg     |
|                                     |            | \$254 Annual   |
|                                     |            |                |
|                                     |            | Tot Heating    |
|                                     |            | \$1,226 Annual |

# Objectives: Design Loop System

## Horizontal

### Horizontal Loops

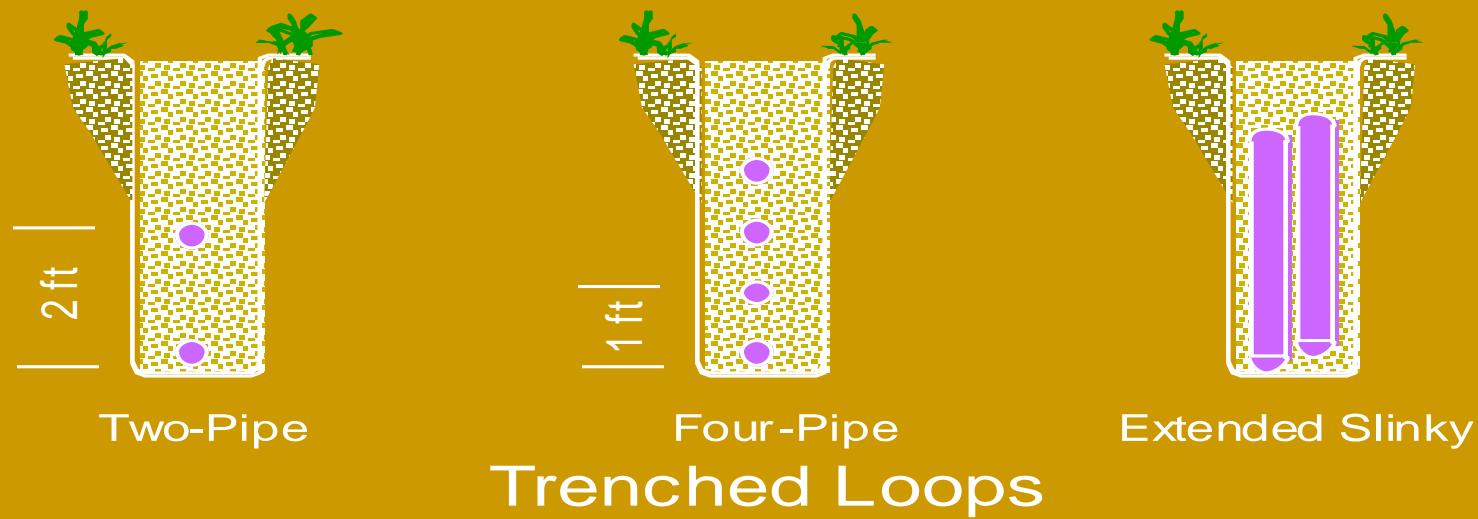
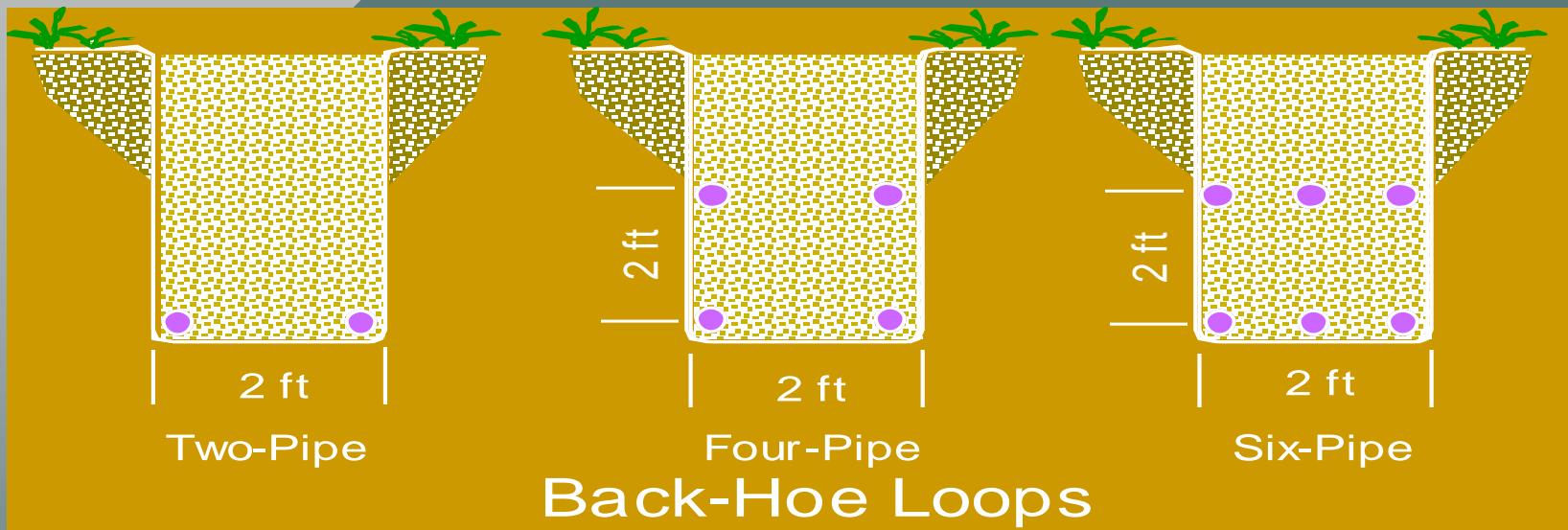
Backhoe or trench excavation

Backhoe used in areas with rock

Loop Piping installed below frost line

¾" & 1" ID PE3408 HD PE pipe

**1 circuit per ton using ¾" and 1" circuits**



**3 gpm flow/ton**

Pipe per ton

North 600 ft - 1200 ft

South 700 ft - 1800 ft

# Objectives: Design Loop System Software Program



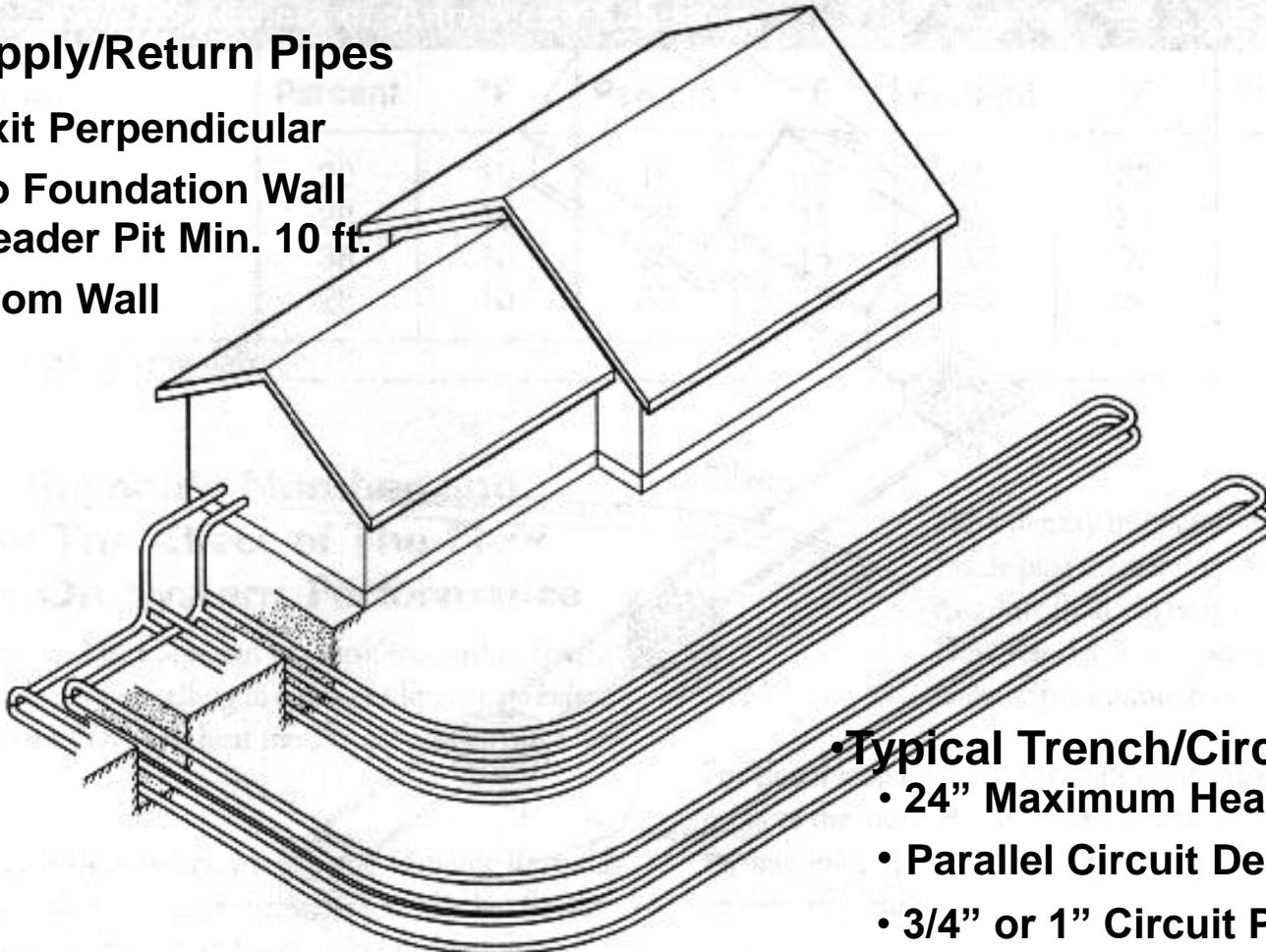
# Objectives: Design Loop System



Trenching



Pit Loops




Horizontal  
Boring

# Four-Pipe Horizontal Loop

- Supply/Return Pipes

- Exit Perpendicular
  - to Foundation Wall
  - Header Pit Min. 10 ft.
  - from Wall



- Typical Trench/Circuit layout

- 24" Maximum Header/Manifold
- Parallel Circuit Design
- 3/4" or 1" Circuit Pipe

# Objectives: Design Loop System Horizontal Trench

Our 5 Ton Design with a 4 pipe Horizontal Loop

## OPTION # 1

**Backhoe or trench  
excavation**

**1 circuit per ton  
using 3/4"  
circuits**

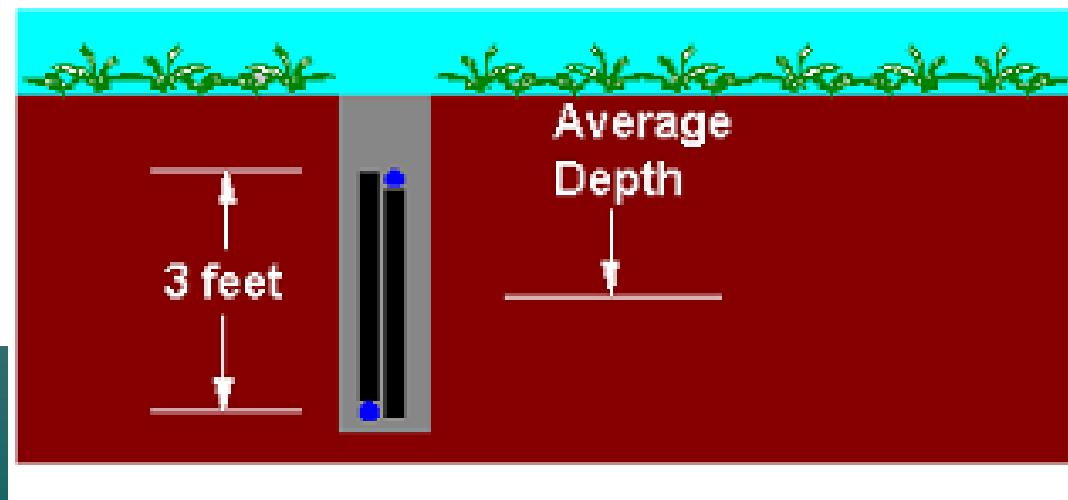
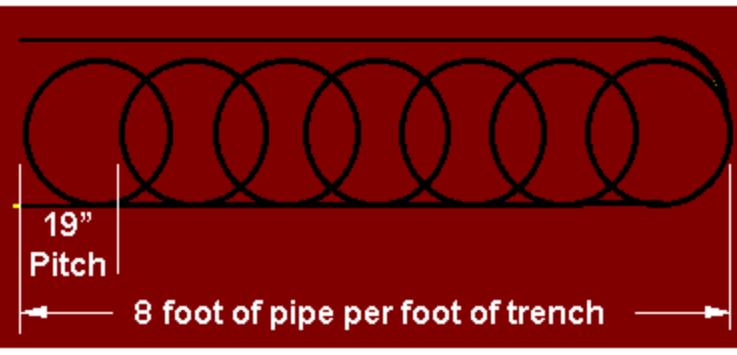
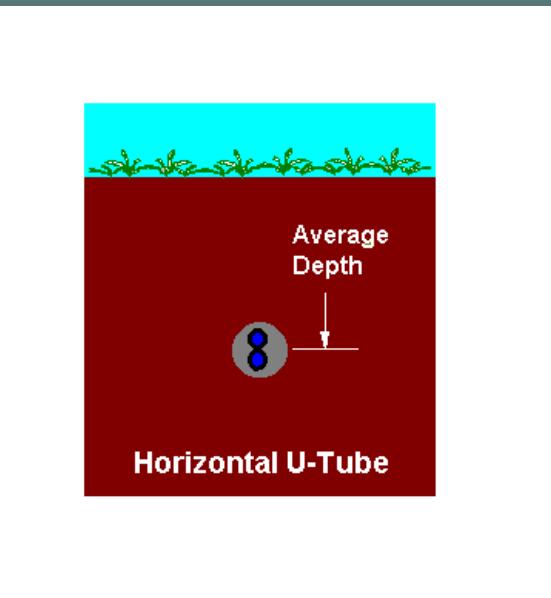
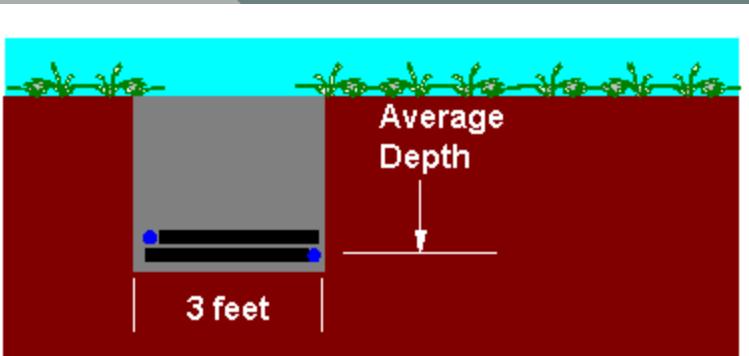
**8 feet AVG Depth**

**870 total feet / 2  
= 2 trenches at  
435 feet each**

**4 Circuits at 900  
FT each**

| TT 064 Vspd and Horz 4 pipe - 0.75" |          |                                         |
|-------------------------------------|----------|-----------------------------------------|
| Geothermal Source                   | Heating  |                                         |
| Trench Length:                      | 870 Feet | 3.66 COP<br>95 % of Htg<br>\$963 Annual |
| Max Cooling:                        | 64 Deg F |                                         |
| Avg Cooling:                        | 52 Deg F |                                         |
| Avg Heating:                        | 38 Deg F | 100 % Eff<br>5 % of Htg<br>\$193 Annual |
| Min Heating:                        | 30 Deg F |                                         |
| Deep Earth Temp:                    | 47 Deg F |                                         |
| Soil Conductivity:                  | 0.90     |                                         |
| Soil Diffusivity:                   | 0.64     | Tot Heating<br>\$1,157 Annual           |

## OPTION # 2





**1 circuit per ton using 3/4" circuits**

**870 total feet / 3 = 3 trenches at 290 feet  
each**

**6 Circuits at 600 FT each**

# Objectives: Design Loop System Software Program

## Slinky Horizontal and Bore Loops



# Objectives: Design Loop System

## Horizontal Bore

Our 5 Ton Design with a Horizontal Bore Loop

### Horizontal Bore

**1 circuit per ton  
using 3/4"  
circuits**

**15 feet AVG Depth**

**1,100 total feet / 5  
= 5 trenches at  
220 feet each**

**5 Circuits at 440 Ft  
each**

| TT 064 Vspd and Horz U-Tube - 0.75" |             |                                                  |
|-------------------------------------|-------------|--------------------------------------------------|
| Geothermal Source                   | Heating     |                                                  |
| Bore Length:                        | 1,100 Feet  | Geothermal 3.64 COP<br>94 % of Htg \$960 Annual  |
| Max Cooling:                        | 64 Deg F    | Aux Heating 100 % Eff<br>6 % of Htg \$226 Annual |
| Avg Cooling:                        | 51 Deg F    |                                                  |
| Avg Heating:                        | 37 Deg F    |                                                  |
| Min Heating:                        | 30 Deg F    |                                                  |
| Deep Earth Temp:                    | 47 Deg F    |                                                  |
| Soil Conductivity:                  | 0.90        |                                                  |
| Soil Diffusivity:                   | 0.64        |                                                  |
|                                     | Tot Heating | \$1,186 Annual                                   |

# Objectives: Design Loop System Pond / Lake

## Lake or Pond Loop

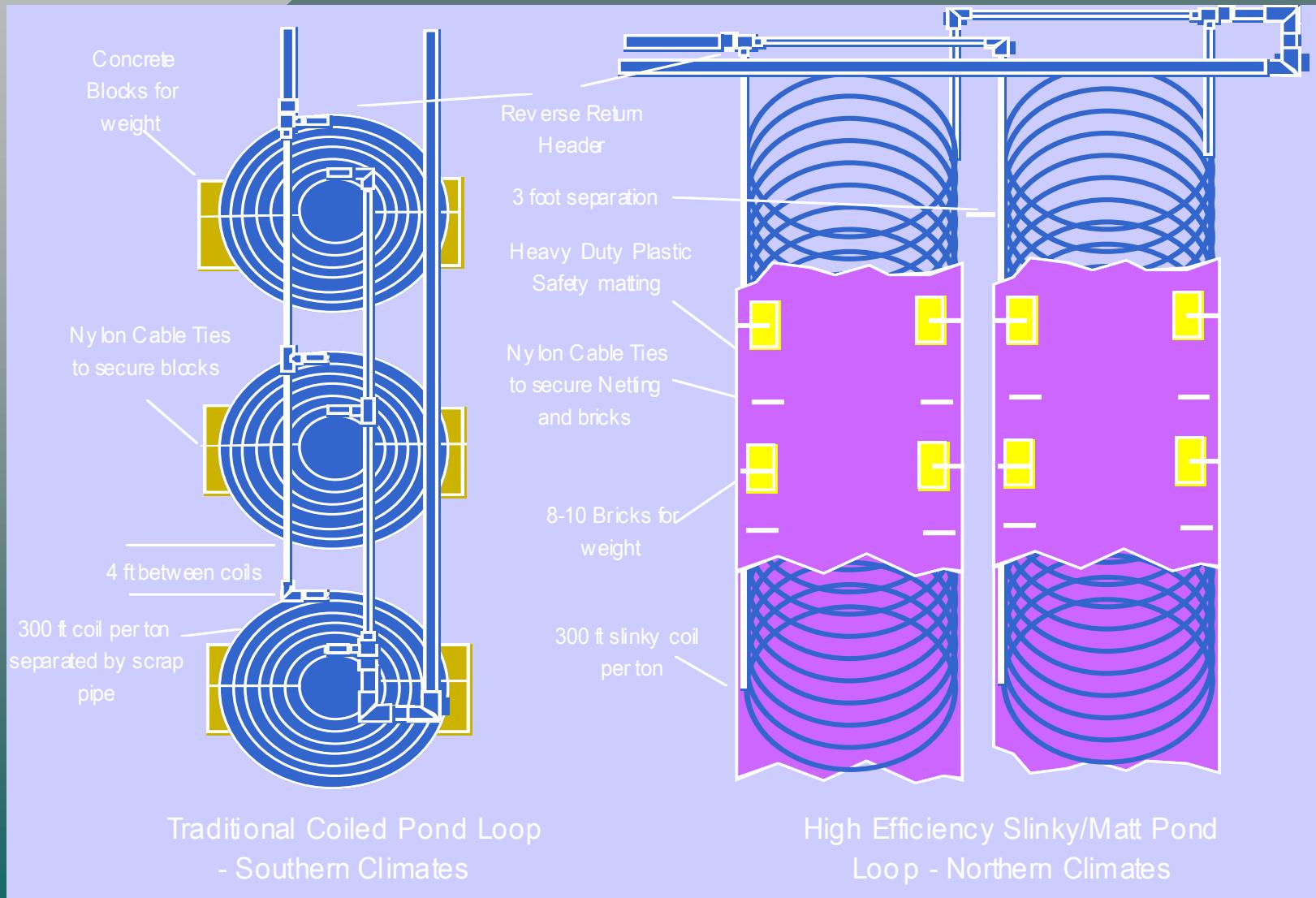
Least expensive ground loop

### **Minimum 1/2 acre and 10 feet deep**

Pond should be within 400' of structure

In North - need ice cover for good operation

Utilizes 39°F water temp (no aeration).


Stagnate water body works best for heating

Pipe footage per ton / circuit

North and South 400 ft -500 ft/ton

3/4" ASTM PE3408 HD PE pipe

# Objectives: Design Loop System Pond / Lake

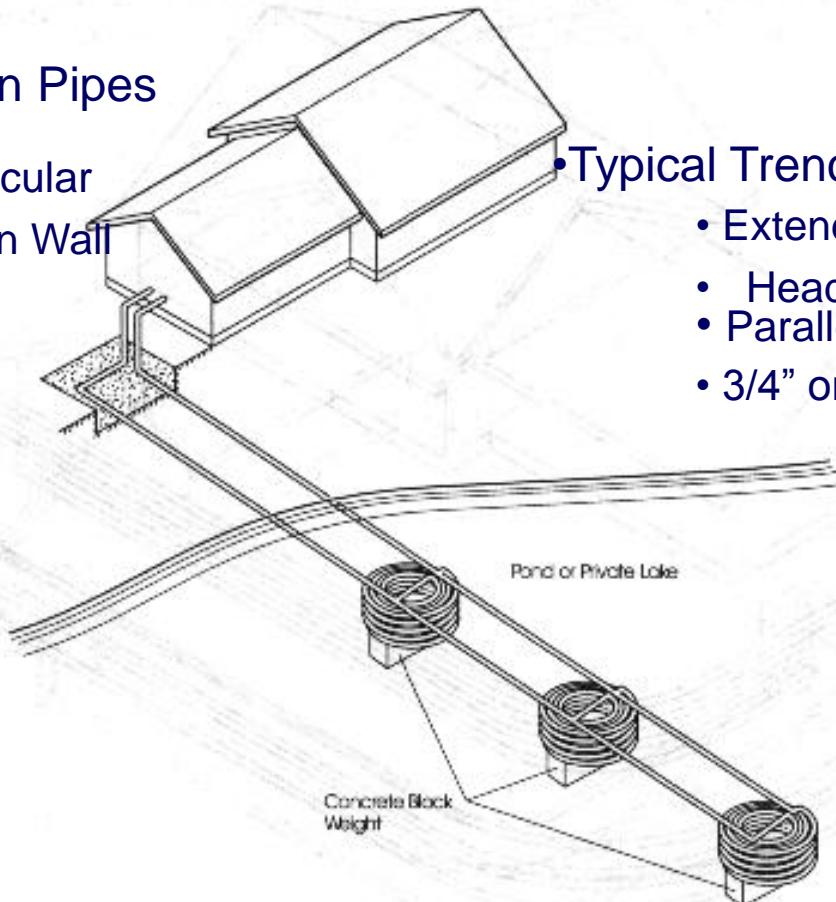


# Lake Loop Coils on Rack



# Objectives: Design Loop System Pond / Lake

Plate Heat Exchangers




Floating Coils



# Pond Loop Layout

- Supply/Return Pipes
  - Exit Perpendicular
  - to Foundation Wall



- Typical Trench/Circuit layout
  - Extended Reverse Return
  - Header/Manifold
  - Parallel Circuit Design
  - 3/4" or 1" HD PE3408 pipe

# Objectives: Design Loop System Pond / Lake

**One Circuit per ton**

Lake or Pond Loop

Some spacing required  
between coils or  
slinky

**USE - One circuit  
per Ton at 400  
FEET and 3 GPM  
flow per ton for 3/4"  
circuits**

**2000 / 5 Tons  
= 400 Feet of  
PE Pipe per  
Circuit w 5  
Total**

| TT 064 Vspd and Pond Loop - Coiled 0.75" |             |                                         |
|------------------------------------------|-------------|-----------------------------------------|
| Geothermal Source                        | Heating     |                                         |
| Pipe Length: 1,500 Feet                  | Geothermal  | 3.54 COP<br>94 % of Htg<br>\$983 Annual |
| Max Cooling: 76 Deg F                    | Aux Heating | 100 % Eff<br>6 % of Htg<br>\$234 Annual |
| Avg Cooling: 65 Deg F                    |             |                                         |
| Avg Heating: 34 Deg F                    |             |                                         |
| Min Heating: 29 Deg F                    |             |                                         |
| Deep Earth Temp: 47 Deg F                | Tot Heating | \$1,218 Annual                          |
| Soil Conductivity: 0.00                  |             |                                         |
| Soil Diffusivity: 0                      |             |                                         |

**Heating Dominant Loads in a Northern  
Climate Should USE 400 Feet of 3/4" PE  
Pipe per Ton / Not 300' / Ton**

**Minimum 1/2 acre / 24,000 SQ FT and a  
MINIMUM of 10 feet deep**

# Quick Connect Test Caps – Examples (McElroy Mfg.)



# Water Side Of System

## Flow Controller / Pump Station



# Water Side Of System

## Non Pressurized Pump Station



# Objectives: Select Loop Circulator Pumps

## Pump Selection

### Pump Selection

- Verify 1 or 2 Pump Flow Controller
- **1 Pump = 3 Ton Unit**
- **2 Pump = 3.5 to 6 Tons**
- Minimum Flow of 2.25 GPM / Ton
- Verify Reynolds Number at 2500 Min.
- Use Pressure Drop Software Program
- Flush Cart Capable of Proper Flow

# Objectives: Effects on Loop Software

Total Bore 4 Ton, 5 Ton VS 6 Ton

| TT 049 Vspd /      |            | TT 064 Vspd / A    |            | TT 072 Vspd / Vert 1 |            |
|--------------------|------------|--------------------|------------|----------------------|------------|
| Geothermal Source  |            | Geothermal Source  |            | Geothermal Source    |            |
| Bore Length:       | 1,010 Feet | Bore Length:       | 1,280 Feet | Bore Length:         | 1,315 Feet |
| Max Cooling:       | 68 Deg     | Max Cooling:       | 63 Deg F   | Max Cooling:         | 62 Deg F   |
| Avg Cooling:       | 56 Deg     | Avg Cooling:       | 53 Deg F   | Avg Cooling:         | 53 Deg F   |
| Avg Heating:       | 33 Deg     | Avg Heating:       | 35 Deg F   | Avg Heating:         | 36 Deg F   |
| Min Heating:       | 30 Deg     | Min Heating:       | 30 Deg F   | Min Heating:         | 30 Deg F   |
| Deep Earth Temp:   | 47 Deg     | Deep Earth Temp:   | 47 Deg F   | Deep Earth Temp:     | 47 Deg F   |
| Soil Conductivity: | 0.90       | Soil Conductivity: | 0.90       | Soil Conductivity:   | 0.90       |
| Soil Diffusivity:  | 0.64       | Soil Diffusivity:  | 0.64       | Soil Diffusivity:    | 0.64       |

# Objectives: Select Loop Circulator Pumps

## Vertical Example with Methanol



## CLIMATEMASTER<sup>®</sup>

• [About](#) • [Contact](#) • [Privacy](#) • [Terms](#) • [Help](#) • [Feedback](#)

3. Inside Pipe s Minimum system flow rate should be 11 gpm.  
8. Determine Pump Sizing Curve Coordinates:

$$\begin{aligned}
 \text{4. Outside Pipe } s: \\
 \text{Tot. gpm (3 gpm/ton)} &= \frac{Q_1 \quad 15.0}{x} \\
 \text{Tot. pres. drop (Ft hd)} &= \frac{h_1 \quad 37.7}{y} \\
 \text{Tot. gpm} \times 2/3 &= \frac{Q_2 \quad 10.0}{x} \\
 \text{PD} = (Q_2^2)(h_1) / (Q_1^2) &= \frac{h_2 \quad 16.8}{y} \\
 \text{Tot. gpm} \times 4/3 &= \frac{Q_3 \quad 20.0}{x} \\
 \text{PD} = (Q_3^2)(h_1) / (Q_1^2) &= \frac{h_3 \quad 67.1}{y}
 \end{aligned}
 \quad \left. \begin{aligned}
 &\text{point A} \\
 &\text{point B} \\
 &\text{point C}
 \end{aligned} \right\}$$

5. Circuit Pipe s 9. Plot system curve & determine which Flow Controller will produce the desired flow rate. Pump Sys B = 16 gpm (to the nearest gpm)

10. Verify circuit Reynolds number: 3578  
(Should be 2,500 or greater)

11. Calculate the amount of antifreeze needed:

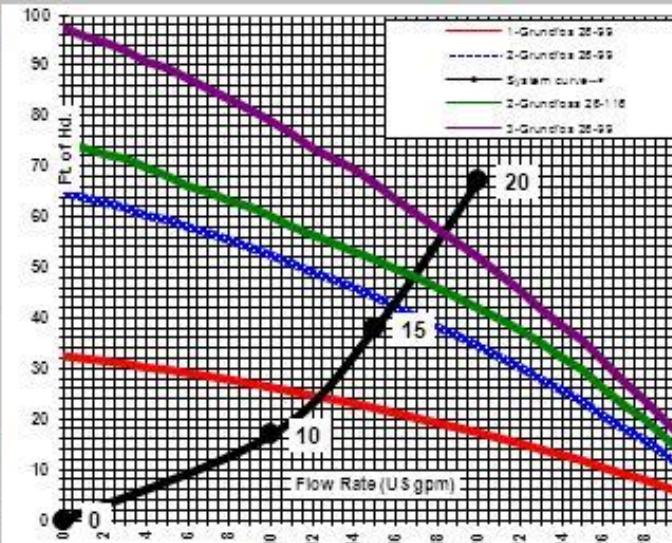
(Price: \$1.00)  $\times$  10 = \$10.00

(Pipe size: 1.00) 10 tot. feet x

(Pipe size: 1.25) 200 tot. feet\* x

(Pipe size: 0.75 } 2550 tot. feet\* x

(Pipe size: \_\_\_\_\_) \_\_\_\_\_ tot. feet\* x \_\_\_\_\_


1) Use decimal number for pipe size (e.g. 3/4)

3) Volume(100 ft<sup>3</sup>) is shown for PE pipe

3) Use 1" pipe for rubber hose.

Version 8.1

rev. 081809



$$4.5 \text{ volume/100 ft.} \div 100 = 0.5 \text{ gallons}$$

$$8.3 \text{ volume/100 ft.} \div 100 = 16.6 \text{ gallons}$$

$$\frac{3.8 \text{ volume/100 ft.} \div 100}{3.8 \text{ volume/100 ft.} \div 100} = \frac{31.4 \text{ gallons}}{31.4 \text{ gallons}}$$

$$\frac{2.8 \text{ volume/100 L}}{100} \div 100 = \frac{71.4 \text{ gallons}}{100}$$

Total fluid in loop: 99.5 gallons\*\*

Total fluid in loop: 35.5 gallons  
% antifreeze: 25% by vol

Total antifreeze req.: 34.9 gallons

Flushing requirements: 20 gpm @ 67 ft. head

# Objectives: Select Loop Circulator Pumps

## Vertical Example with Propylene Glycol

|                                                                                                                                          |                            |                  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|
| Customer: MN GSHPA 2012                                                                                                                  | Antifreeze (M,P,E or W): P | Propylene Glycol |
| Address: 5 Ton Vertical Example                                                                                                          | % Antifreeze by vol.: 25   | %                |
| Address: _____                                                                                                                           | Number of circuits: 4      | _____            |
| <small><sup>1</sup>Note: M = Methanol; P = Propylene Glycol; E = Ethanol; W = Water</small>                                              |                            |                  |
| <small><sup>2</sup>Note: Pump combo A = 1-UP26-99; pump combo B = 2-UP26-99; pump combo C = 2-UP26-116; pump combo D = 3-UP26-99</small> |                            |                  |
| 1. Unit #1: 4 (enter code from below)                                                                                                    | TT_064                     | 5 tons           |
|                                                                                                                                          |                            | gpm 15           |

7. Total Pressure Drop (A + B + C + D + E): 46.4 ft. of hd.\*\* F

Minimum system flow rate should be 11 gpm.

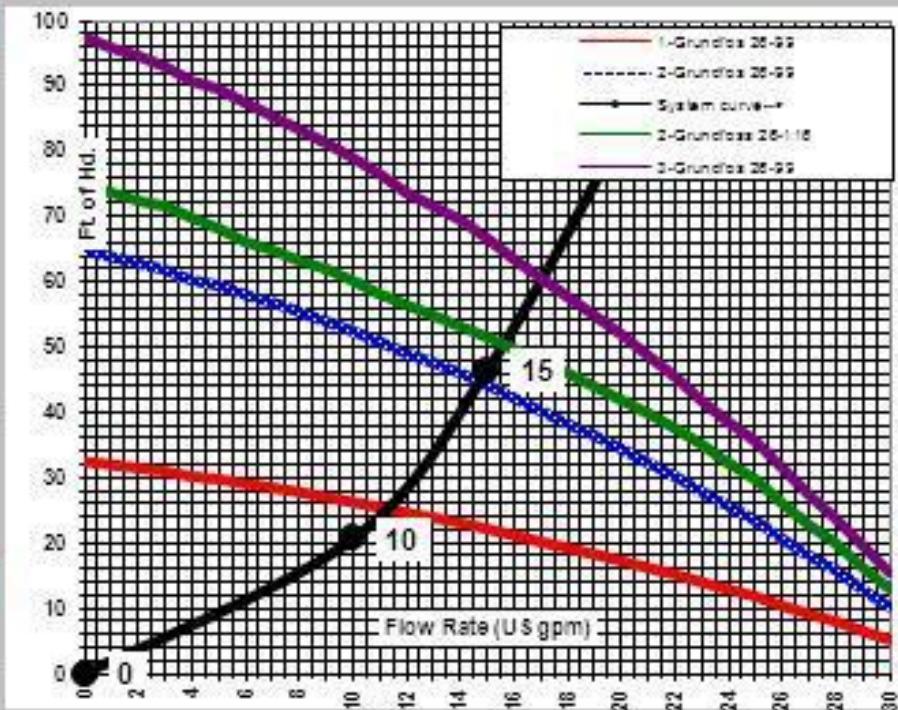
8. Determine Pump Sizing Curve Coordinates:

$$\text{Tot. gpm (3 gpm/ton)} = \frac{Q_1}{15.0} \quad \text{point A}$$

$$\text{Tot. pres. drop (Ft hd)} = \frac{h_1}{46.4} \quad \text{point A}$$

$$\text{Tot. gpm} \times \frac{2}{3} = \frac{Q_2}{10.0} \quad \text{point B}$$

$$\text{PD} = \frac{(Q_2^2)(h_1)}{(Q_1^2)} = \frac{h_2}{20.6} \quad \text{point B}$$


$$\text{Tot. gpm} \times \frac{4}{3} = \frac{Q_3}{20.0} \quad \text{point C}$$

$$\text{PD} = \frac{(Q_3^2)(h_1)}{(Q_1^2)} = \frac{h_3}{82.5} \quad \text{point C}$$

9. Plot system curve & determine which Flow Controller will produce the desired flow rate.

Pump Sys C = 16 gpm (to the nearest gpm)

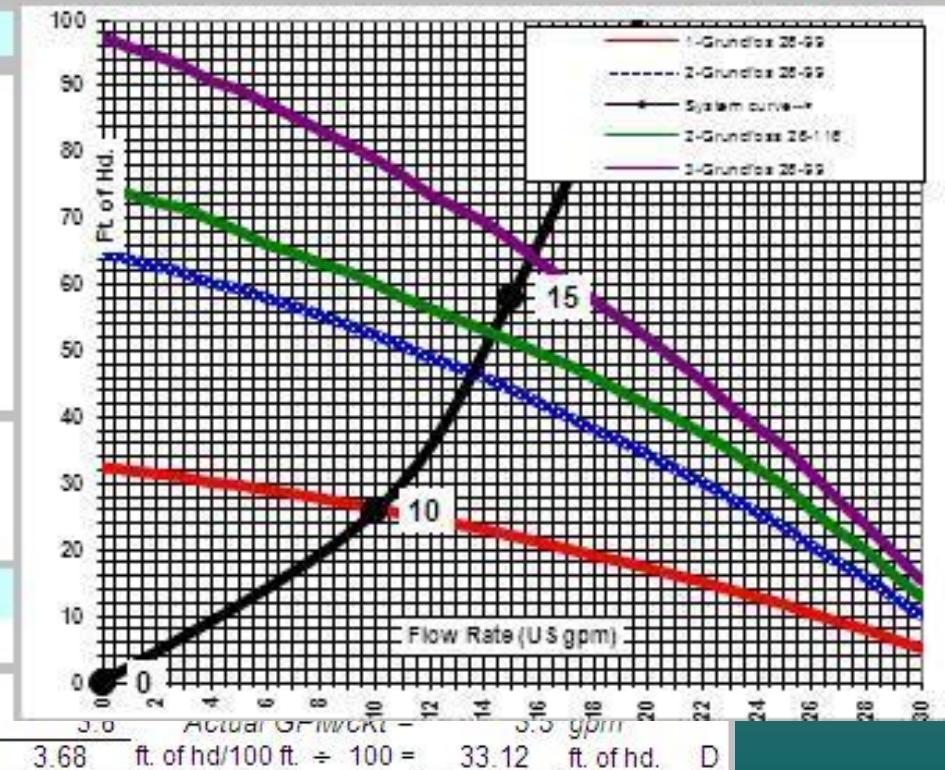
10. Verify circuit Reynolds number: 2554  
(Should be 2,500 or greater)



# Objectives: Select Loop Circulator Pumps

## Horizontal 4 Pipe w 4 Circuits Example

|                                          |                         |    |          |
|------------------------------------------|-------------------------|----|----------|
| Customer: MN GSHPA 2012                  | Antifreeze (M,P,E or W) | M  | Methanol |
| Address: 5 Ton Horizontal 4 Pipe Example | % Antifreeze by vol.:   | 25 | %        |
| Address: With 4 Circuits                 | Number of circuits:     | 4  |          |


6. Fittings (Add 2 ft. of hd. for every 10 fittings): 18 (number of fittings) 3.6 ft. of hd. E  
7. Total Pressure Drop (A + B + C + D + E): 58.1 ft. of hd.\*\* F

Minimum system flow rate should be 11 gpm.

8. Determine Pump Sizing Curve Coordinates:  
Tot. gpm (3 gpm/ton) = Q1 15.0 x } point A  
Tot. pres. drop (Ft hd) = h1 58.1 y }  
Tot. gpm x 2/3 = Q2 10.0 x } point B  
PD=(Q2^2)(h1)/(Q1^2) h2 25.8 y }  
Tot. gpm x 4/3 = Q3 20.0 x } point C  
PD=(Q3^2)(h1)/(Q1^2) h3 103.4 y }

9. Plot system curve & determine which Flow Controller will produce the desired flow rate.  
Pump Sys B = 13 gpm (to the nearest gpm)

10. Verify circuit Reynolds number: 3690  
(Should be 2,500 or greater)



# Objectives: Select Loop Circulator Pumps

## Horizontal 4 Pipe w 6 Circuits Example

Customer: MN GSHPA 2012

Address: 5 Ton Horizontal 4 Pipe Example

Address: With 4 Circuits

Antifreeze (M,P,E or W) M Methanol

% Antifreeze by vol.: 25 %

Number of circuits: 6

Pump combination: B (2) UP26-99

<sup>1</sup>Note: M = Methanol; P = Propylene Glycol; E = Ethanol; W = Water

### 7. Total Pressure Drop (A + B + C + D + E):

Minimum system flow rate should be 11 gpm.

### 8. Determine Pump Sizing Curve Coordinates:

$$\text{Tot. gpm (3 gpm/ton)} = \frac{Q_1}{15.0} \quad \text{point A}$$

$$\text{Tot. pres. drop (Ft hd)} = \frac{h_1}{35.9} \quad \text{point A}$$

$$\text{Tot. gpm} \times \frac{2}{3} = \frac{Q_2}{10.0} \quad \text{point B}$$

$$PD = \frac{(Q_2^2)(h_1)}{(Q_1^2)} = \frac{h_2}{15.9} \quad \text{point B}$$

$$\text{Tot. gpm} \times \frac{4}{3} = \frac{Q_3}{20.0} \quad \text{point C}$$

$$PD = \frac{(Q_3^2)(h_1)}{(Q_1^2)} = \frac{h_3}{63.8} \quad \text{point C}$$

### 9. Plot system curve & determine which Flow Controller will produce the desired flow rate.

Pump Sys B = 16 gpm (to the nearest gpm)

### 10. Verify circuit Reynolds number: 3019

(Should be 2,500 or greater)

Pipe size: 0.75 in.

Design GPM/ckt:

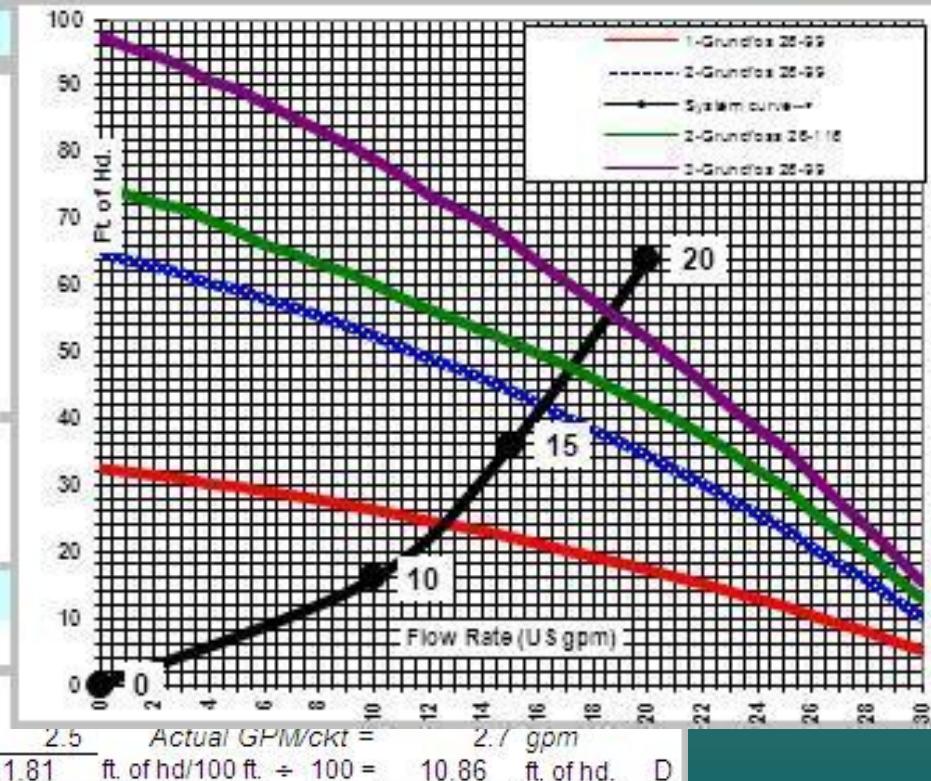
600 ft. of pipe\* x

2.5

ft. of hd/100 ft. ÷ 100 =

1.81

10.86


Actual GPM/ckt =

2.7

gpm

ft. of hd.

D



# Objectives: Select Loop Circulator Pumps

## Lake Loop w 4 Circuits Example

5. Circuit Piping (Use only one circuit if piped using parallel header system; use total pipe if series loop):

$$\text{Pipe size: } 0.75 \text{ in.} \quad \text{Design GPM/ckt: } 3.8 \quad \text{Actual GPM/ckt} = 4.0 \text{ gpm}$$

$$500 \text{ ft. of pipe}^* \times 4.23 \text{ ft. of hd/100 ft.} \div 100 = 21.17 \text{ ft. of hd.} \quad D$$

6. Fittings (Add 2 ft. of hd. for every 10 fittings):  $18 \text{ (number of fittings)} \times 3.6 \text{ ft. of hd.} = E$

7. Total Pressure Drop (A + B + C + D + E):  $43.4 \text{ ft. of hd.}^{**} = F$

Minimum system flow rate should be 11 gpm.

8. Determine Pump Sizing Curve Coordinates:

$$\text{Tot. gpm (3 gpm/ton)} = Q_1 \quad 15.0 \quad x \quad \text{point A}$$

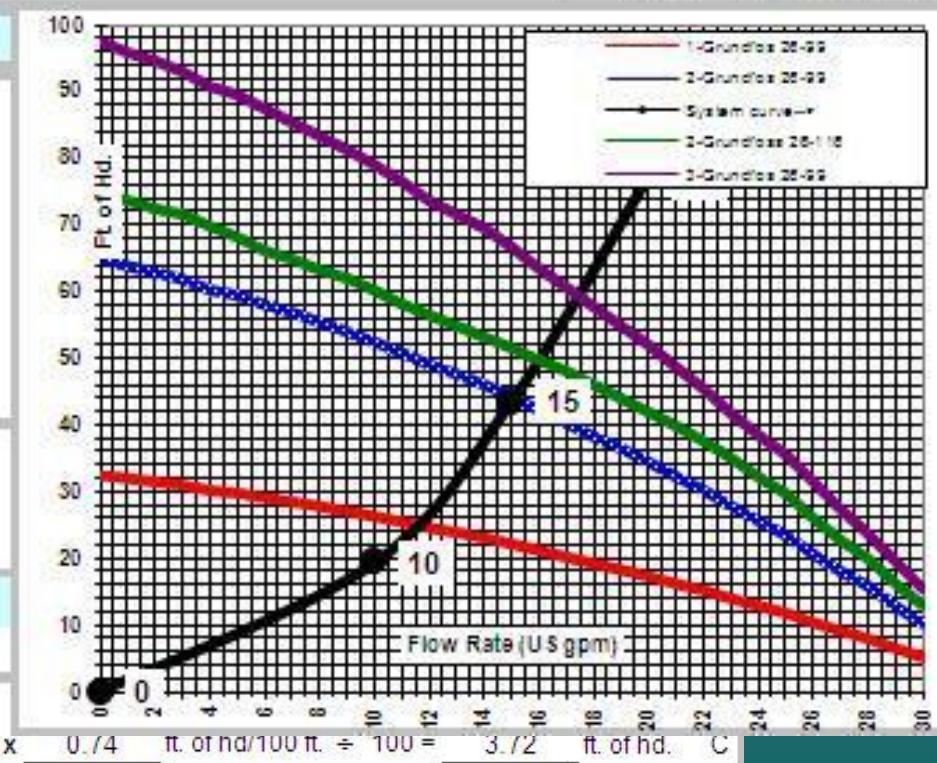
$$\text{Tot. pres. drop (Ft hd)} = h_1 \quad 43.4 \quad y \quad \text{point A}$$

$$\text{Tot. gpm} \times 2/3 = Q_2 \quad 10.0 \quad x \quad \text{point B}$$

$$PD = (Q_2^2)(h_1) / (Q_1^2) \quad h_2 \quad 19.3 \quad y \quad \text{point B}$$

$$\text{Tot. gpm} \times 4/3 = Q_3 \quad 20.0 \quad x \quad \text{point C}$$

$$PD = (Q_3^2)(h_1) / (Q_1^2) \quad h_3 \quad 77.2 \quad y \quad \text{point C}$$


9. Plot system curve & determine which Flow

Controller will produce the desired flow rate.

Pump Sys C = 16 gpm (to the nearest gpm)

10. Verify circuit Reynolds number: 2554

(Should be 2,500 or greater)



# Objectives: System Performance Evaluation

## Each Unit **MUST** Have Proper Startup

**CLIMATEMASTER**  
Packaged Unit Refrigeration Schematic

**COMMISSIONING WORKSHEET**

Rev. 11/08

Job Name: \_\_\_\_\_ Date: \_\_\_\_\_ Antifreeze: \_\_\_\_\_

Model#: \_\_\_\_\_ Serial#: \_\_\_\_\_ Unit Tag #: \_\_\_\_\_

Wire Size: \_\_\_\_\_ Voltage: \_\_\_\_\_ Amps: \_\_\_\_\_

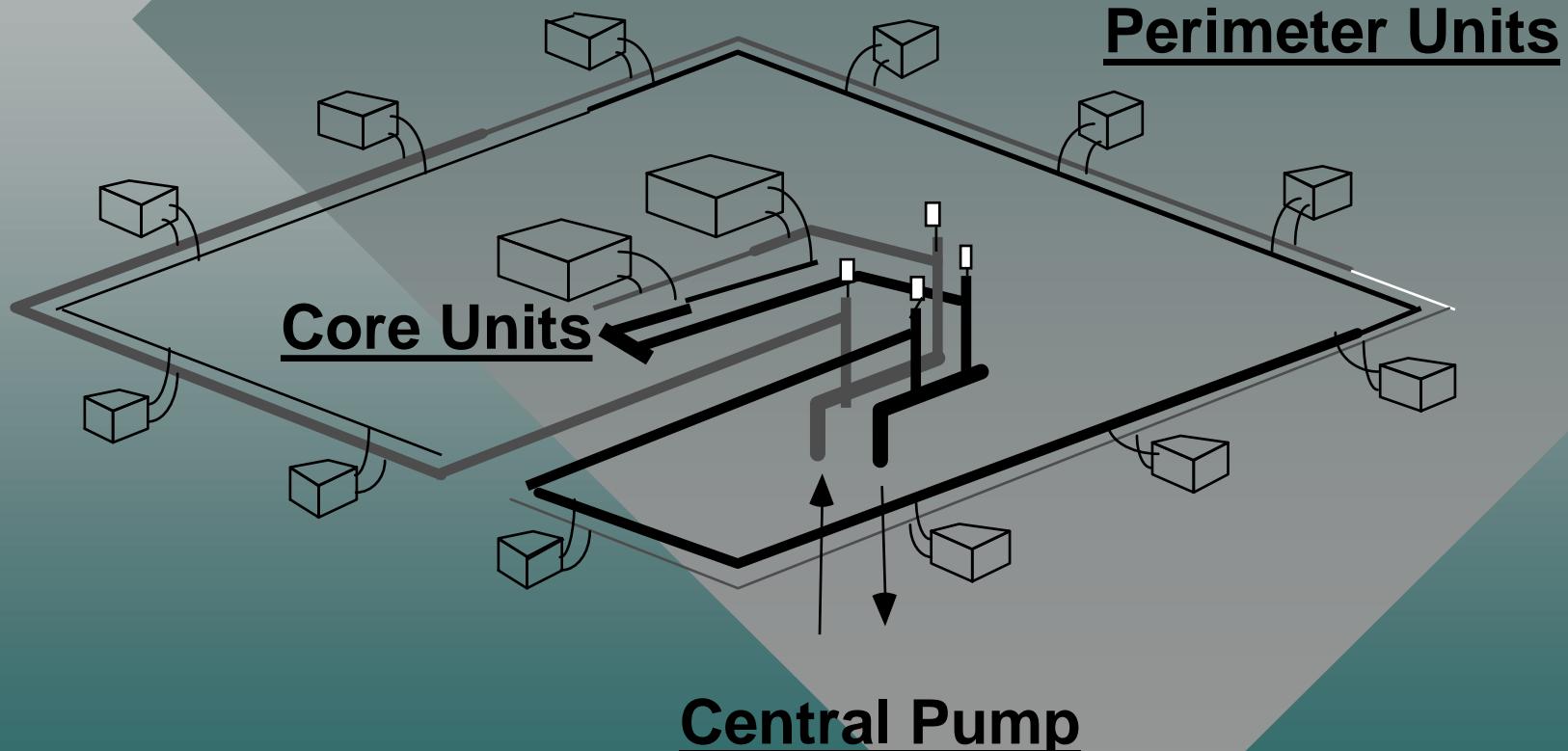
**HEATING CYCLE ANALYSIS -**

**COOLING CYCLE ANALYSIS -**

# Objectives: Building Loads Commercial

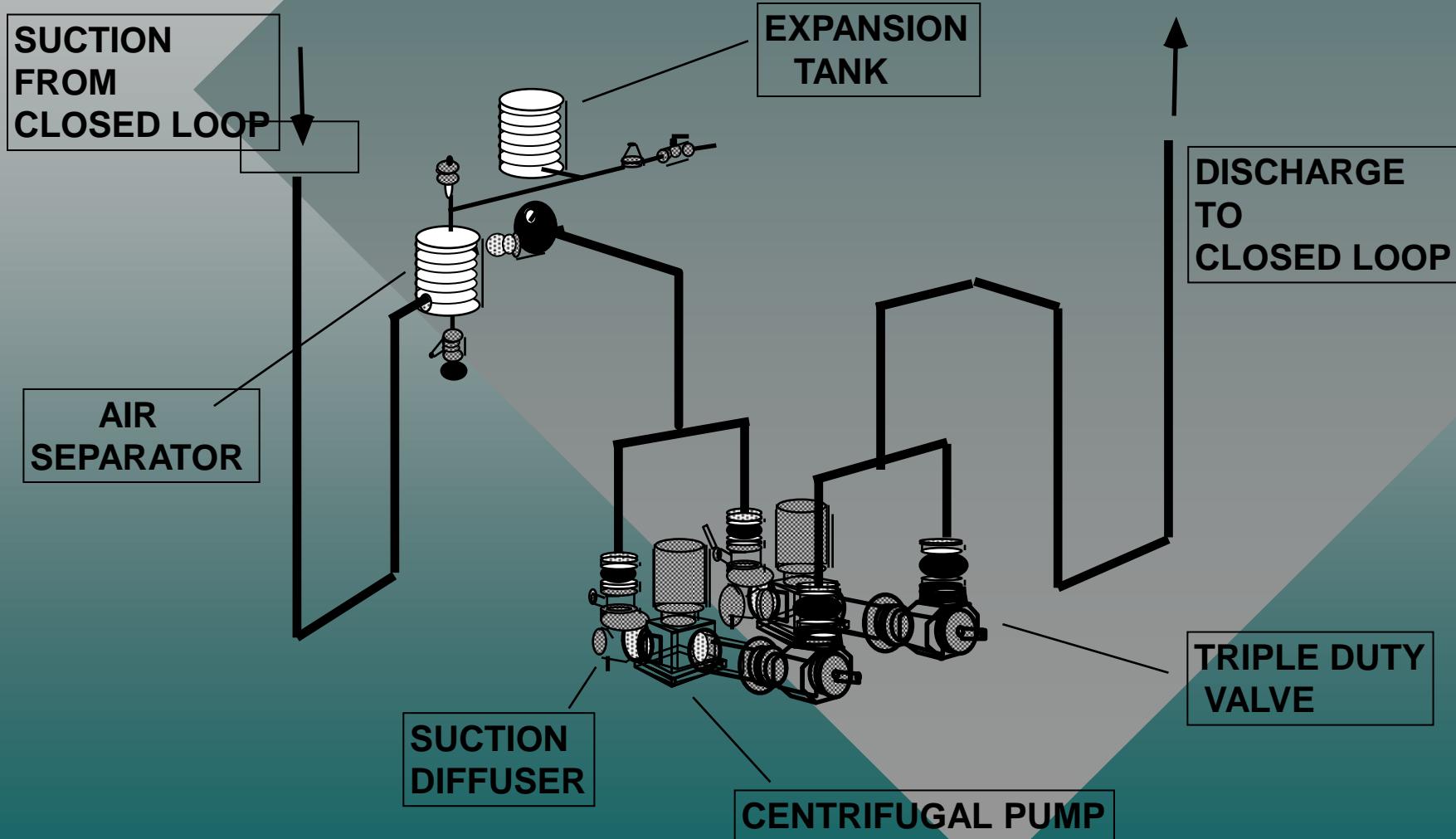
Commercial - Calculate Building Loads using  
ACCA Manual N or ASHRAE Method

Zone loads are used to select heat pumps


Peak block load is used to determine bore  
loop depths

Heating and cooling loads are required for  
each zone / area that will have a ground  
loop system

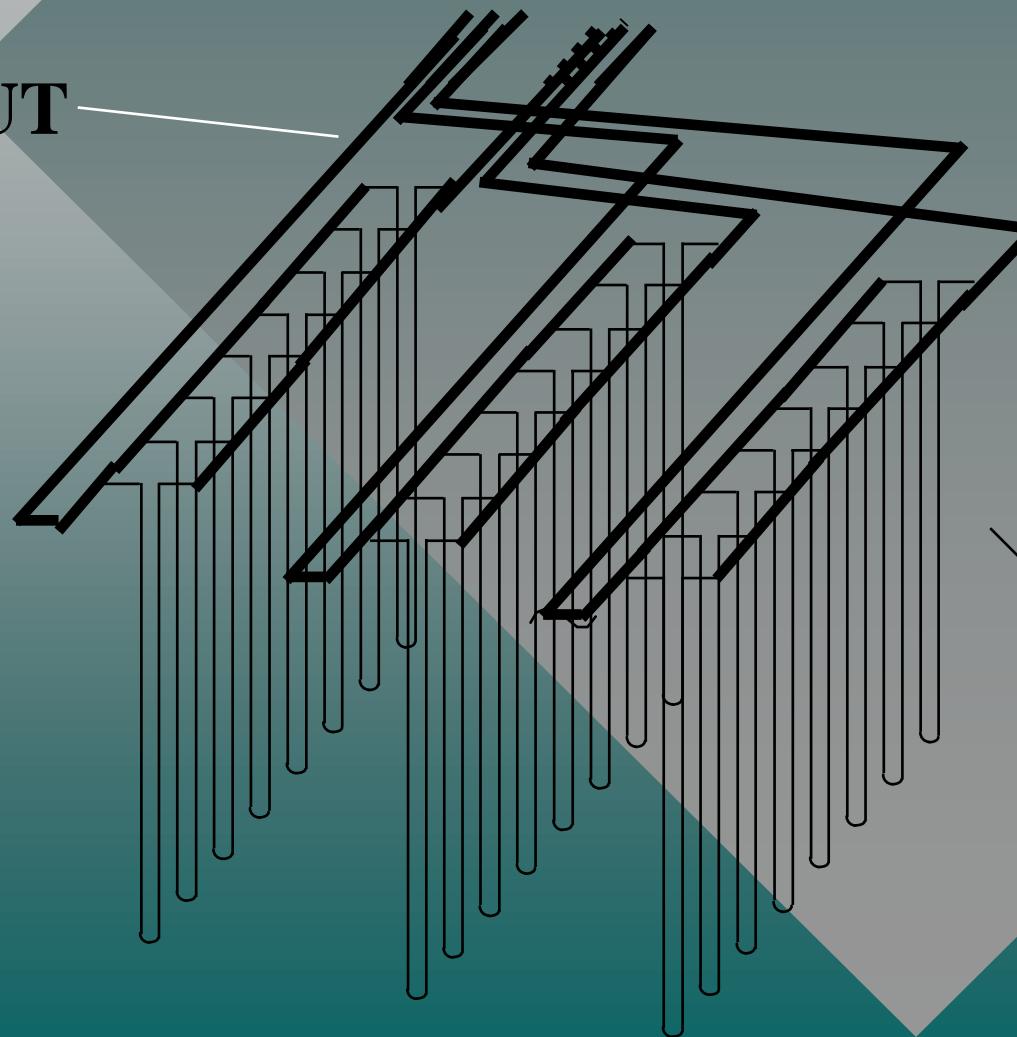
Commercial Building Load Profile is  
“Normally” Cooling Dominate


# Objectives: Building Loads Commercial

## UNIT LAYOUT- PERIMETER AND CORE DESIGN



# Objectives: Building Loads Commercial


## CENTRAL PUMP STATION APPLICATION



# Objectives: Loop Design / Basic Commercial

## Commercial Loop Layout

**RUNOUT**



**CIRCUIT or  
BORE**

# Objectives: Loop Design / Basic Commercial

## USE Peak Building Load for Loop Size / AEFLH

Average Block Loads - Garber Church C 10 5 06 d

Garber Church C3 10 5 06

Reference Label: Garber Church C2 10 2 06

Design Day Loads

| Design Day Loads       |                 |                      |                       |
|------------------------|-----------------|----------------------|-----------------------|
| Days Occupied per Week | Time of Day     | Heat Gains (MBtu/Hr) | Heat Losses (MBtu/Hr) |
| 7.0                    | 8 a.m. - Noon   | 572.0                | 650.0                 |
|                        | Noon - 4 p.m.   | 715.0                | 305.0                 |
|                        | 4 p.m. - 8 p.m. | 430.0                | 200.0                 |
|                        | 8 p.m. - 8 a.m. | 180.0                | 300.0                 |

Transfer

Calculate Hours

Annual Equivalent Full-Load Hours: 600 800

Heat Pump Specifications at Design Temperature and Flow Rate

Custom Pump Pump Name: GRV 036

|                     | Cooling | Heating |
|---------------------|---------|---------|
| Capacity (MBtu/Hr)  | 756.7   | 650.0   |
| Power (kW)          | 61.66   | 55.51   |
| EER/COP             | 12.3    | 3.4     |
| Flow Rate (gpm)     | 178.8   | 162.5   |
| Partial Load Factor | 0.94    | 1.00    |

Flow Rate: 3.0 gpm/ton Unit Inlet (°F): 80.0 45.0

Four Time Periods

Annual Equivalent Full Load Hours

# Objectives: Loop Design / Basic Commercial

## Unit Sized to Peak Zone Load

Average Block Loads - Garber Church C 10 5 06 d

Garber Church C3 10 5 06

Reference Label: Garber Church C2 10 2 06

Design Day Loads

| Days Occupied per Week | Time of Day     | Heat Gains (MBtu/Hr) | Heat Losses (MBtu/Hr) |
|------------------------|-----------------|----------------------|-----------------------|
| 7.0                    | 8 a.m. - Noon   | 572.0                | 650.0                 |
|                        | Noon - 4 p.m.   | 715.0                | 305.0                 |
|                        | 4 p.m. - 8 p.m. | 430.0                | 200.0                 |
|                        | 8 p.m. - 8 a.m. | 180.0                | 300.0                 |

Transfer

Calculate Hours

Annual Equivalent Full-Load Hours: 600 800

Heat Pump Specifications at Design Temperature and Flow Rate

ClimateMaster

Pump Name: GS Vertical

GS Vertical  
GR Horizontal  
GR Vertical  
GS Horizontal  
GS Split  
Paradigm  
RE Rooftop  
Ultra Classic - Full Load

Flow Rate: 3.0 gpm/ton

Unit Inlet (°F): 80.0 45.0

Equipment  
Selection

# Objectives: Loop Design / Vertical Loop Data

**Borehole Design Project - 100 ton Example 7 22 09**

Results | Fluid | Soil | U-Tube | Pattern | Extra kW | Information |

|                                 | COOLING        | HEATING |
|---------------------------------|----------------|---------|
| Total Length (ft):              | <b>23946.6</b> | 11929.2 |
| Borehole Number:                | <b>72</b>      | 72      |
| Borehole Length (ft):           | <b>332.6</b>   | 165.7   |
| Ground Temperature Change (°F): | <b>+0.9</b>    | +1.7    |
| Unit Inlet (°F):                | <b>90.0</b>    | 35.0    |
| Unit Outlet (°F):               | <b>100.3</b>   | 29.5    |
| Total Unit Capacity (kBtu/Hr):  | <b>1263.2</b>  | 1105.5  |
| Peak Load (kBtu/Hr):            | <b>1200.0</b>  | 750.0   |
| Peak Demand (kW):               | <b>101.7</b>   | 67.4    |
| Heat Pump EER/COP:              | <b>11.8</b>    | 3.3     |
| System EER/COP:                 | <b>11.8</b>    | 3.3     |
| System Flow Rate (gpm):         | <b>300.0</b>   | 187.5   |

Optional Cooling Tower/Boiler

|                                 |             |               |     |
|---------------------------------|-------------|---------------|-----|
| Condenser Capacity (kBtu/hr):   | <b>0.0</b>  | Cooling Tower | 0 % |
| Cooling Tower Flow Rate (gpm):  | <b>0.0</b>  | .....         | 0 % |
| Cooling Range (°F):             | <b>10.0</b> | Boiler        | 0 % |
| Annual Operating Hours (hr/yr): | <b>0</b>    | .....         | 0 % |
| Boiler Capacity (kBtu/hr):      | <b>0.0</b>  | Load Balance  | 0 % |

## Borehole Depth

## System Flow Rate GPM

## Optional “Hybrid” Design with Fluid Cooler or Boiler

# Objectives: Finance Module

## Life Cycle Analysis

**S Finance Module - 100 ton Example 7 22 09**

Results | Geothermal | Conventional | Utilities | Other Costs | Incentives

**Alternate Systems**

| System:             | 1        | COOLING | HEATING   | TOTAL           |          |             |
|---------------------|----------|---------|-----------|-----------------|----------|-------------|
| Total Annual Power: | 78,000.0 | kwh     | 0.0       | kwh             | 78,000.0 | kwh         |
| Water:              | 0.0      | Gallons | 0.0       | Gallons         | 0.0      | Gallons     |
| Other:              | None     |         | 500,121.2 | ft <sup>3</sup> |          | Natural Gas |

**System Details**

|                      | COOLING            | HEATING         |             |                 |   |
|----------------------|--------------------|-----------------|-------------|-----------------|---|
| Eqv Full-Load Hours: | 650                | hr              | 550         | hr              |   |
| Equipment Type:      | Air-cooled Chiller |                 | Boiler      |                 |   |
| Power Source:        | Electricity        |                 | Natural Gas |                 |   |
| Installed Capacity:  | 1200.0             | kBtu/hr         | 750.0       | kBtu/hr         |   |
| Efficiency:          | 10.0               | EER             | 80.0        | %               |   |
| Extra Power:         | 0.0                | kW              | 0.0         | kW              |   |
| Mech. Install Area:  | 0.0                | ft <sup>2</sup> | 0.0         | ft <sup>2</sup> |   |
| Water Usage Rate:    | 0.00               | gpm/ton         | 0.00        | gpm/ton         | ? |

## Conventional System Inputs

## System Types

## System Efficiency

# Objectives: Finance Module

## Life Cycle Analysis

**Finance Module - 100 ton Example 7 22 09**

Results Geothermal Conventional Utilities Other Costs Incentives

**Geothermal System**

|                     | COOLING     | HEATING     | TOTAL              |
|---------------------|-------------|-------------|--------------------|
| 25.0 years          | 25.0        | 25.0        | 25.0               |
| Geothermal Power:   | 49367.1 kwh | 33582.5 kwh | 82949.5 kwh        |
| Hybrid Power:       | 0.0 kwh     | 0.0 kwh     | 0.0 kwh            |
| Total Annual Power: | 49367.1 kwh | 33582.5 kwh | <b>82949.5 kWh</b> |
| Water:              | 0.0 Gallons | 0.0 Gallons | 0.0 Gallons        |
| Other:              | None        | None        |                    |

**Primary Geothermal**      **Hybrid Component**

|                               | COOLING        | HEATING       |
|-------------------------------|----------------|---------------|
| Eqv Full-Load Hours:          | 650 hr         | 550 hr        |
| Peak Capacity:                | 1200.0 kBtu/hr | 750.0 kBtu/hr |
| Average Heat Pump Efficiency: | 15.8 EER       | 3.6 COP       |
| Circulation Pump Input Power: | 0.0 kW         | 0.0 kW        |
| Circ. Pump Power:             | 0.0 hP         | 0.0 hP        |
| Motor Efficiency:             | 85.0 %         | 85.0 %        |
| Additional Power:             | 0.0 kW         | 0.0 kW        |

Mech. Room Installation Area: 0.0 ft<sup>2</sup>

## Geothermal System Inputs

## System Types

## System Efficiency

# Objectives: Finance Module

## Life Cycle Analysis

Finance Module - 100 ton Example 7 22 09

Results | Geothermal | Conventional | Utilities | Other Costs | Incentives

**Estimated Cost Results**

Geothermal Alternate    Air-cooled Chiller Boiler

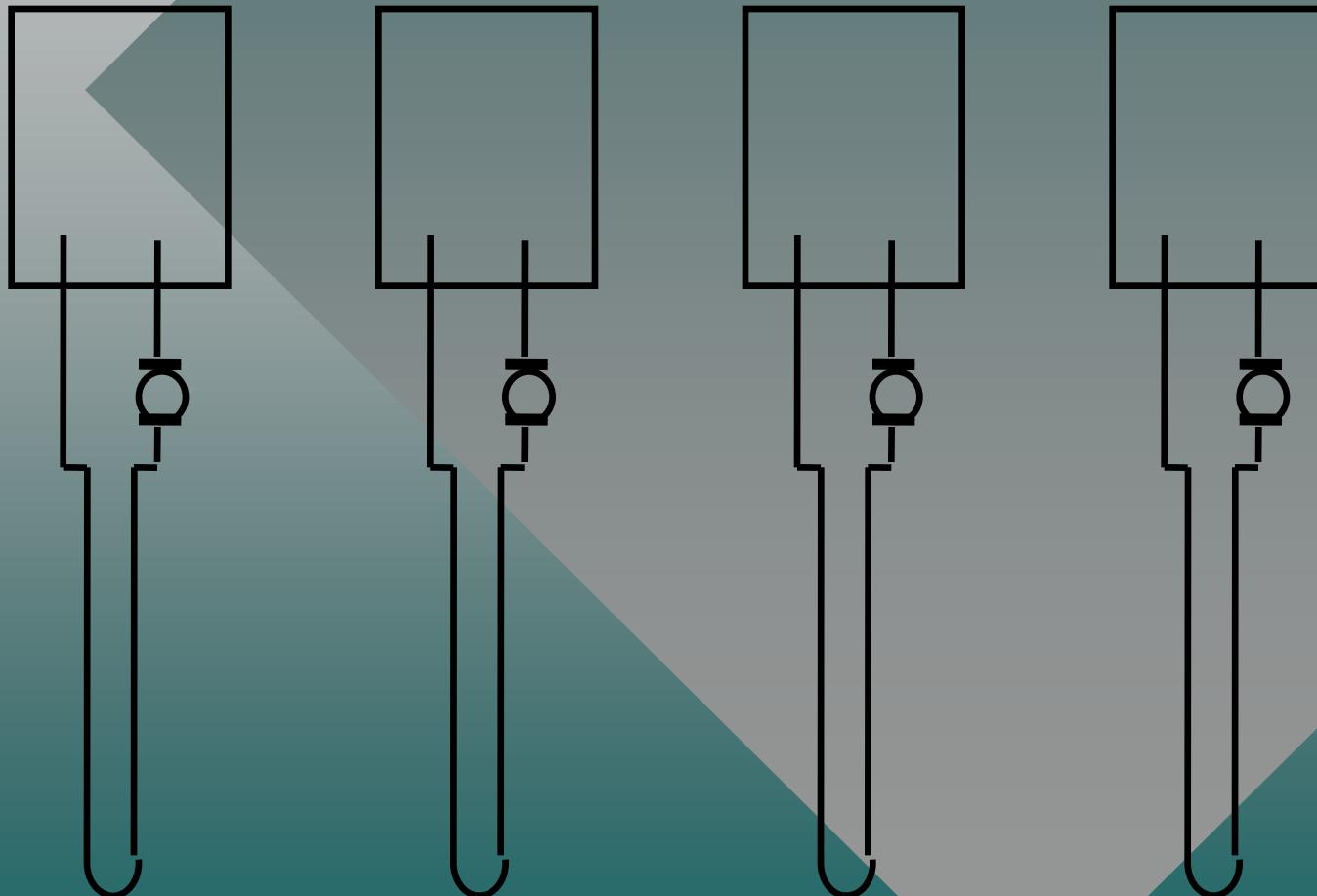
|                                            | Geothermal        | Alternate         |
|--------------------------------------------|-------------------|-------------------|
| Annual Costs (\$)                          |                   |                   |
| Energy                                     | 5,806.47          | 21,463.88         |
| CO2 Emissions                              | 0.00              | 0.00              |
| Water                                      | 0.00              | 0.00              |
| Maintenance                                | 0.00              | 0.00              |
| Mechanical Room Lease                      | 0.00              | 0.00              |
| <b>Annual Total</b>                        | <b>5,806.47</b>   | <b>21,463.88</b>  |
| <i>NPV Lifecycle Costs (\$) - 25 years</i> |                   |                   |
| Energy                                     | 118,282.01        | 556,945.01        |
| CO2 Emissions                              | 0.00              | 0.00              |
| Water                                      | 0.00              | 0.00              |
| Maintenance                                | 0.00              | 0.00              |
| Mechanical Room Lease                      | 0.00              | 0.00              |
| Installation                               | 0.00              | 37,740.00         |
| Salvage                                    | 0.00              | (173.21)          |
| <b>Lifecycle Total</b>                     | <b>118,282.01</b> | <b>594,511.80</b> |

**Annual Energy  
Savings**

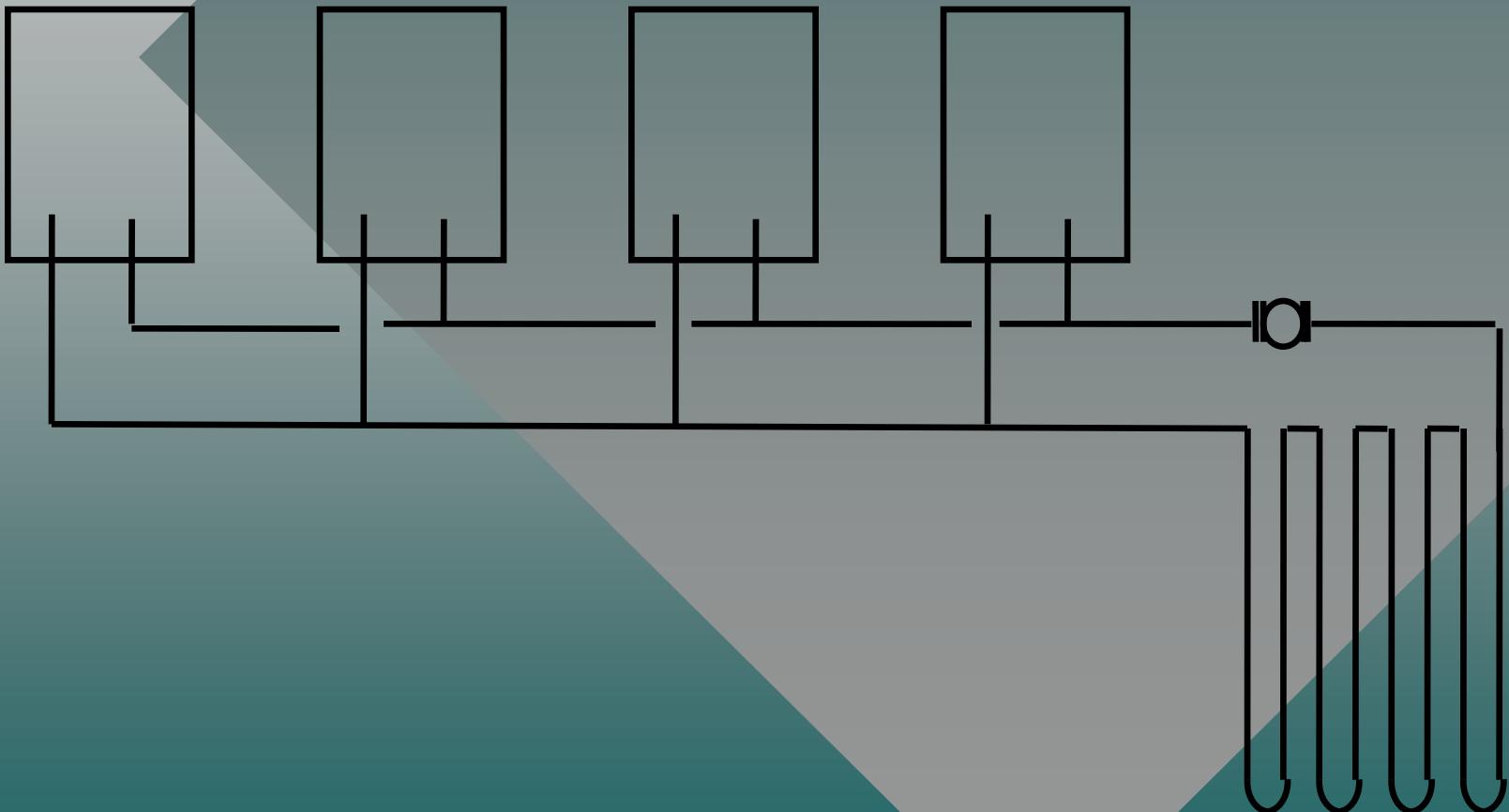
**25 YR Total Example**

# Objectives: Finance Module

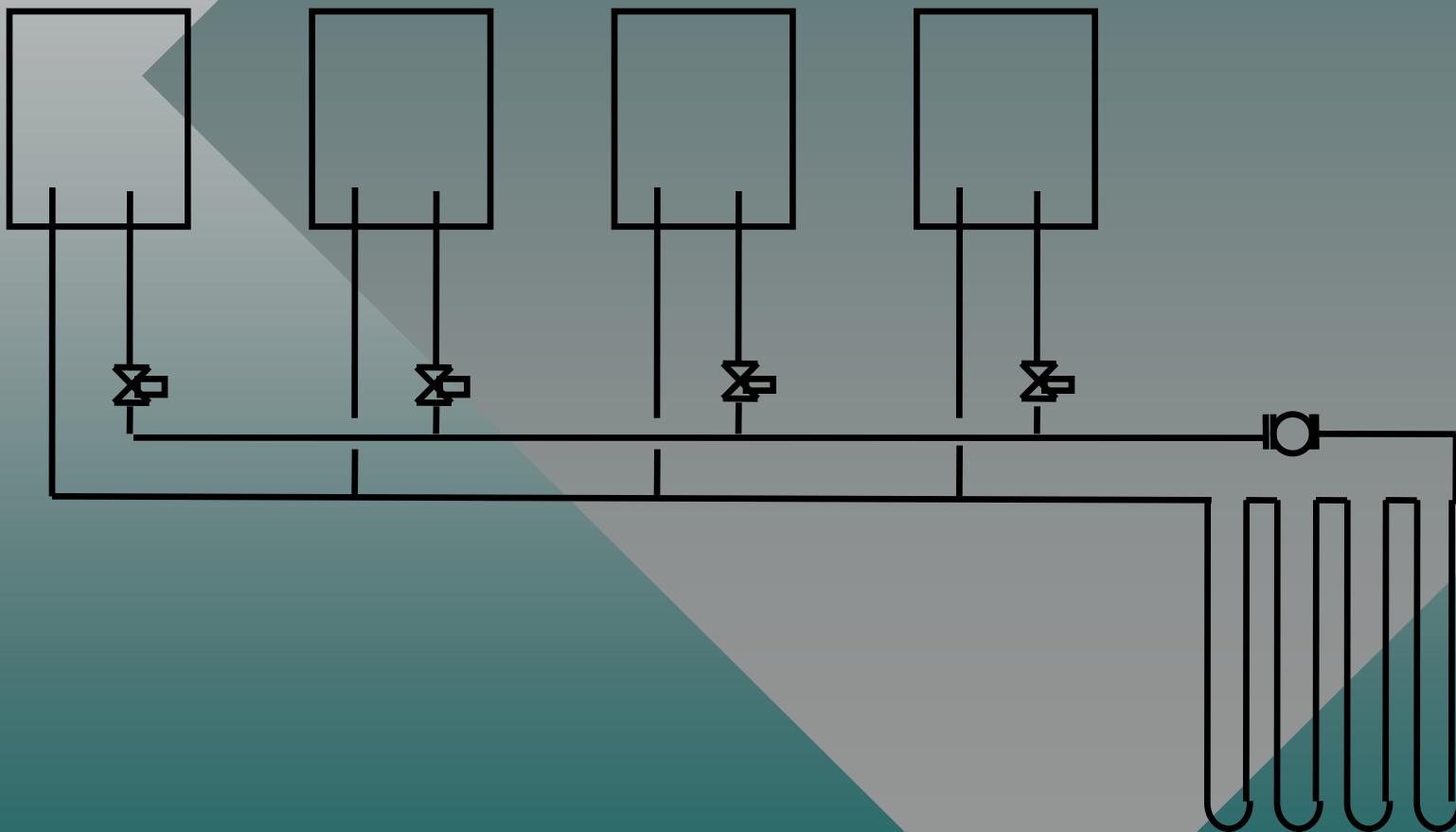
## Life Cycle Analysis


**Finance Module - 100 ton Example 7 22 09**

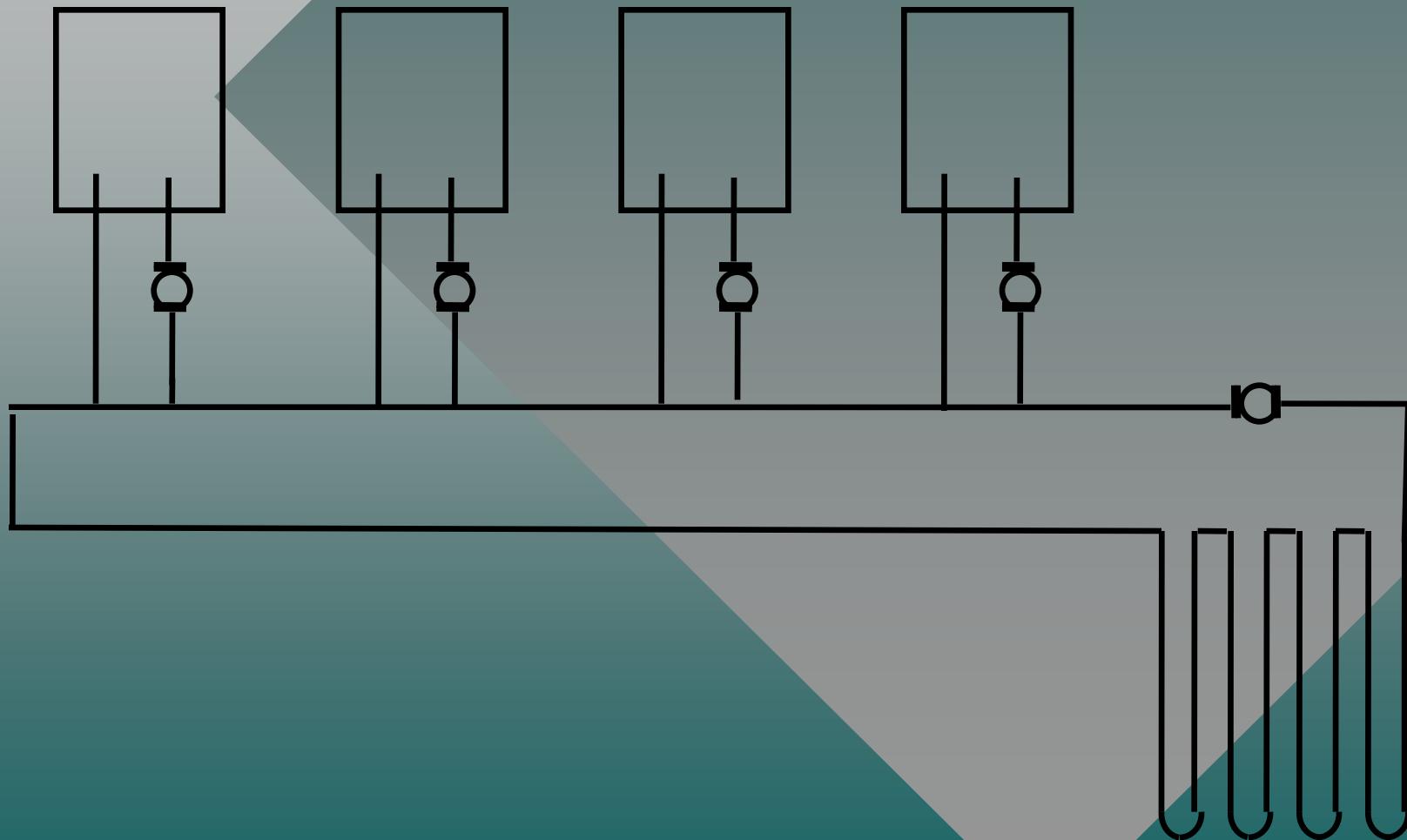
|                                          | Geothermal        | Alternate         |
|------------------------------------------|-------------------|-------------------|
| Energy                                   | 5,806.47          | 21,463.88         |
| CO2 Emissions                            | 622.12            | 1,073.97          |
| Water                                    | 0.00              | 0.00              |
| Maintenance                              | 532.80            | 1,776.00          |
| Mechanical Room Lease                    | 0.00              | 0.00              |
| <b>Annual Total</b>                      | <b>6,961.39</b>   | <b>24,313.85</b>  |
| <i>NPV Lifecycle Costs (\$)-25 years</i> |                   |                   |
| Energy                                   | 118,282.01        | 556,945.01        |
| CO2 Emissions                            | 5,981.52          | 10,325.89         |
| Water                                    | 0.00              | 0.00              |
| Maintenance                              | 8,981.33          | 29,937.75         |
| Mechanical Room Lease                    | 0.00              | 0.00              |
| Installation                             | 47,952.00         | 73,260.00         |
| Salvage                                  | 0.00              | (173.21)          |
| <b>Lifecycle Total</b>                   | <b>181,196.85</b> | <b>670,295.44</b> |


## Full Life Cycle Cost Data

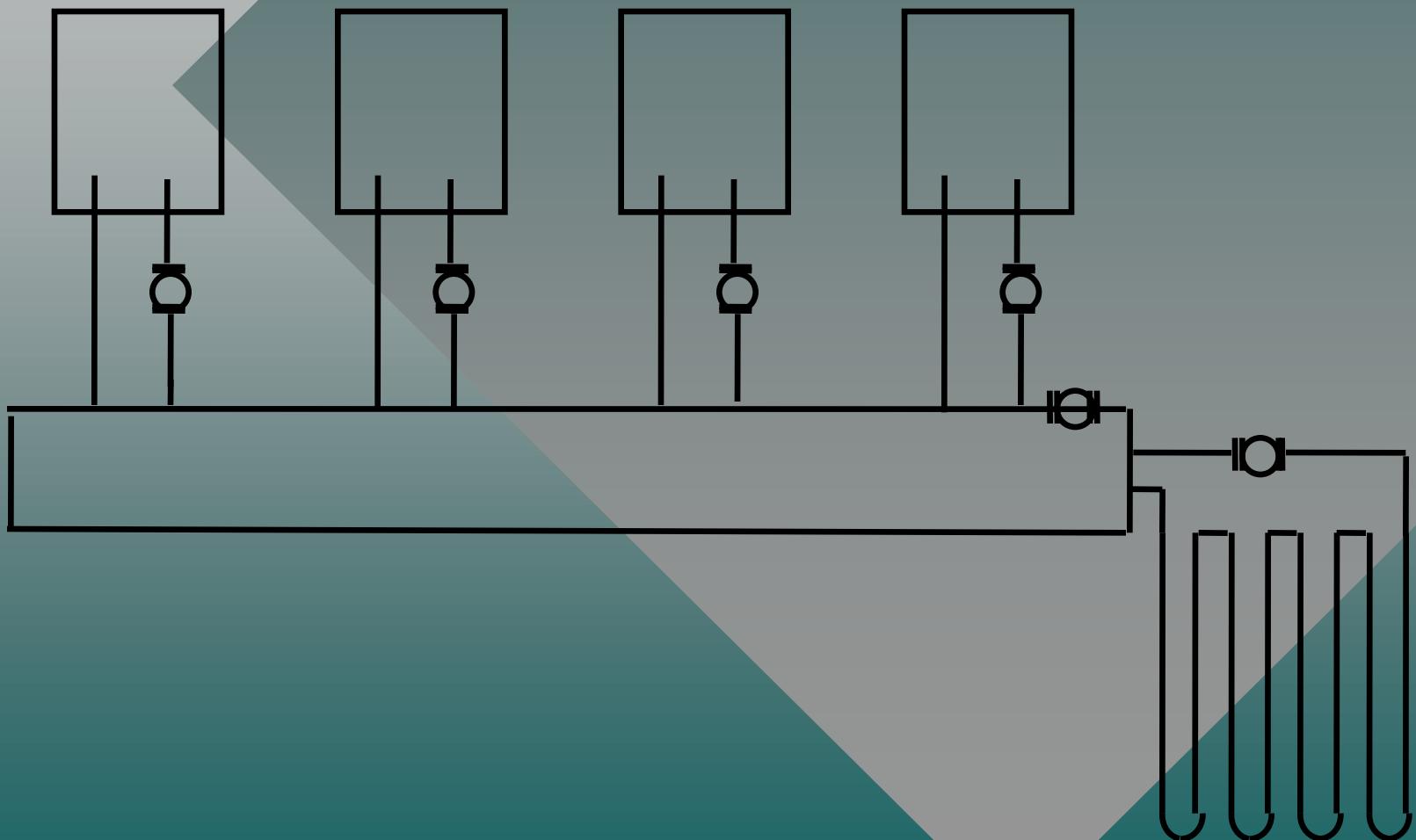
25 YR Total Example


# Independent Systems

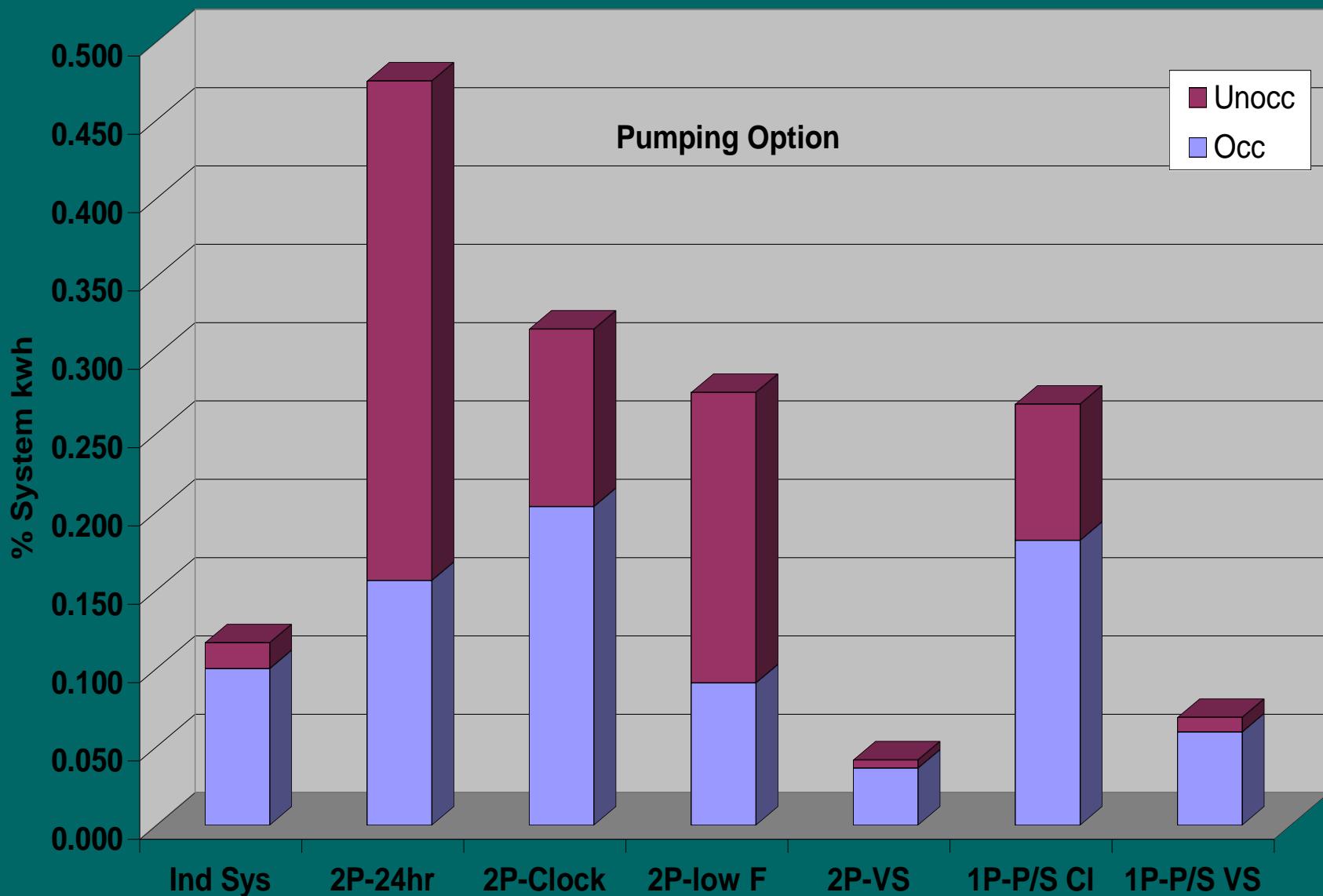



# Central 2-Pipe Constant-Speed




# Central 2-Pipe Variable-Speed




# Central 1-Pipe Primary/Secondary



# Central 1-Pipe Primary/Secondary



# Example: Pumping Energy Comparison



# Sizing Procedures

Calculate Building / Zone  
Heating / Cooling Loads

Select Geothermal Heat Pump/s for  
Building / Zones

Design Ground Loop System

Run Operating Costs Comparison Using a  
Software Program

Verify Dehumidification in Cooling Mode

Check Effects on Ground Loop System by  
Unit Size

# Questions?



# Thanks for Your Time!